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Abstract

This is a written exposition 1 of our article [3] based on my talk at the Linfoot number theory seminar
in Bristol on June 3rd, 2020.
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1 Elliptic curves and isogenies

Recall that an elliptic curve E over a finite field Fq (of characteristic > 3) is an algebraic group given by an
equation

E : y2 = x3 + ax+ b, a, b ∈ Fq, 4a3 + 27b2 6= 0

That is, it is an algebraic variety that is also an (abelian) group, and the group law is given by geometric
formulae: the chord-and-tangent law.

When we talk about points of E, we mean pairs P = (xP , yP ) ∈ (Fq)2 satisfying the defining equation
and the point at infinity OE . However, in this setting, we are mostly concerned with rational points E(Fq) :
points of E with both coordinates in Fq.

An isogeny (defined over Fq) between elliptic curves E,E′/Fq is a rational map ϕ : E → E′

ϕ : (x, y) 7→ (f(x, y), g(x, y))

for some f, g ∈ Fq(x, y) which is also a group homomorphism. In short, it is a morphism of algebraic groups.

1Please contact me with any comments or remarks at ja.sotakova@gmail.com.
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An important example is the multiplication by m: denoted [m] : E → E and defined as

P 7→ [m]P.

As the group law is given algebraically, it is easily seen that [m] is indeed an isogeny. It is possible to write
down the exact formulae for [m], depending only on the coefficients a, b.

We can compose isogenies as we can compose rational maps, but we can also add isogenies using the
group law of elliptic curves. With addition and composition as multiplication, the endomorphisms of E form
a ring, denoted End(E).

All non-zero isogenies have a finite kernel, for instance,

ker([m]) = E[m] subgroup of points of order m

Note that even though [m] is always a rational isogeny, the m-torsion points can be defined over an extension
field. As abelian groups, E[m] ∼= Z/mZ× Z/mZ.

Conversely, from any finite subgroup H ⊂ E we can construct an isogeny

ϕ : E → E/H kerϕ = H

Then the isogeny ϕ can be defined over Fq if and only if the group H can be defined over H. Note that this
does not imply that all the points of H have to be rational points. Also, the isogeny is only defined up to
postcomposing with automorphism.

The degree of a separable isogeny ϕ : E → E′ is the size of the kernel:

degϕ = #ker(ϕ)

There is essentially only one exception to this rule: the inseparable Frobenius endomorphism

π : (x, y) 7→ (xq, yq)

has degree q but kernel kerπ = {OE}. However, any inseparable isogeny is a composition of the Frobenius
with a separable isogeny.

To sum up: isogenies are the group homomorphisms of elliptic curves and have essentially the same
properties as group homomorphisms of abelian groups. Moreover, the finiteness of the kernel is forced on us
by geometry and the degree map is the correct notion of size.

2 Isogeny-based cryptography

In isogeny-based cryptography, elliptic curves are the public keys and isogenies are the secret. Namely, from
a chosen starting curve E0/Fq (which is a public parameter), construct some secret isogeny

ϕ : E0 → E.

• E is your public key: everyone can contact you using the public data and your public key E,

• the isogeny ϕ is your secret key: you are the only one who knows ϕ, nobody should be able to
impersonate you without knowing ϕ.

Main problem to break in isogeny-based cryptography: Given two elliptic curves E0, E/Fq, find
an isogeny between E0 and E.

This is a necessary hard problem, because in this (naive) setting, it corresponds exactly to recovering the
secret keys from public keys. The hardness of this problem does not imply the security of the cryptosystem,
though. In particular, we will show how gaining ‘one bit’ of information about the secret key still allows us
to break the DDH assumption in some settings.

Depending on the setting, we may be asked to find an isogeny of a particular degree (e.g. a power of 2
or 3 in SIKE, or of a smooth degree in CSIDH), with prescribed values (in SIKE, images of certain torsion
points are a part of the public key). But often, any isogeny will do.
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3 Elliptic curves with complex multiplication

Let E be an elliptic curve over Fq. Then the number of rational points is given by

#E(Fq) = q + 1− t, |t| ≤ 2
√
q,

where |t| is bounded by the Hasse-Weil bound.
The integer t is the trace of the Frobenius: the endomorphism π satisfies

π2 − tπ + q = 0 in End(E),

and note that if f(x) = x2− tx+ q is the characteristic polynomial of π (acting on the `-torsion groups E[`]
for any `, for instance), then

#E(Fq) = q + 1− t = f(1).

Moreover, the number of points over an extension field is given by the following relation with the polynomial
L(x) = x2f(1/x) = 1− tx+ qx2 :

1− tx+ qx2

(1− x)(1− qx)
=

∞∑
n=1

#E(Fnq )
xn

n
.

From the Hasse-Weil bound we note that the discriminant of disc f = ∆π = t2 − 4q ≤ 0, and if ∆π 6= 0,
then Z[π] is an order in an imaginary quadratic field Q(

√
∆π).

The case ∆π = 0 corresponds to t = ±2
√
q and this can only happen for supersingular curves defined

over even degree extensions of Fp. Moreover, in this case, the endomorphism ring is a maximal order in a
quaternion algebra. Such is the setting for the SIDH/SIKE protocols.

If the discriminant ∆π 6= 0, then for all the endomorphisms of E which are defined over Fq, that is, the
ring EndFq

(E), we have the following inclusions:

Z[π] ⊂ EndFq (E) ⊂ OK ⊂ Q(
√

∆π)

From now on, we will be in this case:

EndFq
(E) = O is an order in an imaginary quadratic field

3.1 From ideals to isogenies

Recall the notation: E is an elliptic curve over Fq with q + 1 − t points, t2 − 4q = ∆π and we have the
following inclusions Z[π] ⊂ EndFq

(E) = O ⊂ Q(
√

∆π).
For any ideal a ⊂ O we can produce a finite subgroup

E[a] = ∩α∈a kerα,

by intersecting all the kernels of endomorphisms in the ideal a.

Example: consider the ideal (m,π − 1) ⊂ O. It is enough to compute the intersection of the kernels of
the generators, that is, E[(m,π − 1)] = ker[m] ∩ ker(π − 1).

The kernel ker[m] = E[m] is the subgroup of points of order dividing m. The group ker(π−1) = E[π−1]
is the subgroup on which π acts like identity: the subgroup of points (x, y) such that (x, y) = (xq, yq). But
this means that x, y ∈ Fq. So we get

E[π − 1] = E(Fq)

Finally, E[(m,π − 1)] = E[m] ∩ E(Fq) = E(Fq)[m] is the m-torsion of the group E(Fq), which can be
any subset of ⊂ Z/mZ× Z/mZ.
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Assume further that a is an invertible ideal. From the finite subgroup E[a], we can compute an isogeny

ϕa : E → E/E[a] kerϕa = E[a].

Then the degree turns out to be exactly the norm:

ϕa = N(a)

Moreover, if a is invertible, then E/E[a] has the same endomorphism ring O and trace t. And if a and b are
in the same class in cl(O), then we end up with Fq-isomorphic curves:

E/E[a] ∼=Fq
E/E[b].

This leads us to consider the set of elliptic curves of fixed endomorphism ring and trace, up to Fq-
isomorphism:

È `q(O, t) = { elliptic curves E/Fq |EndFq
(E) ∼= O and trπ = t }/ ∼=Fq

.

Theorem 3.1 (‘Main theorem of complex multiplication’). The mapping

cl(O)× È `(O, t)→ È `(O, t)

([a], E) 7→ [a] ? E = E/E[a]

(where a is any representative of [a]) is a free and transitive group action.

4 Commutative isogeny-based cryptography

The action of cl(O) on È `q(O, t) is free and transitive:

• every two elliptic curves E0, E ∈ È `q(O, t) are connected by a unique ideal class [a]:

E = [a] ? E0

The secret isogeny φ : E0 → E is obtained by the group action

E0 → E = [a] ? E0.

The class group action allows us to transport the structure from the group cl(O) to the set È `q(O, t).
While abelian groups are susceptible to the Shor’s algorithm for computing discrete logarithms (and thus
computing secret keys from public keys), it is assumed that the group action hides enough of the structure
of cl(O) that it is no longer possible to apply Shor’s algorithm.

The problem of revealing the secret class [a] ∈ cl(O) from the two elliptic curves E0, E is called the
vectorization problem (analogous finding a vector connecting two points in an affine space) or the group
action inverse problem (GAIP).

We will show that, surprisingly, the group action does not hide all the structure of cl(O). This will not
break vectorization/GAIP, but a related computational assumption.

For concreteness, we dicuss the specific choices of different proposals in this area.

Setting: Choose q and t and O and a starting curve E0 ∈ È `q(O, t). Secret keys: choose a random class
[a] ∈ cl(O); public key: compute

E = [a] ? E0.

• Couveignes [4] and Rostovstev and Stolbunov [7] allow ordinary elliptic curves over any Fq, any t and
O. This leads to an extremely inefficient protocol.

• de Feo, Kieffer and Smith [5] use ordinary elliptic curves over a prime field Fp with #E(Fp) = p+ 1− t
divisible by lots of small primes (for efficiency). However, it is not easy to find suitable parameters.
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• Castryck, Lange, Martindale, Panny, and Renes in CSIDH [2] use supersingular elliptic curves (t = 0)
over Fp with p ≡ 3 mod 8, order O = Z[

√
−p] and #E(Fp) = p + 1 divisible by lots of small primes

and obtain a fairly efficient scheme.

• Cstryck and Decru in CSURF [1] and also Fan, Tian, Li, and Xu [6] use supersingular elliptic curves

over Fp with p ≡ 7 mod 8, order O = Z
[

1+
√
−p

2

]
and #E(Fp) = p+1 divisible by lots of small primes.

This results in some gains in performance over CSIDH.

5 How do we study isogenies?

We have two elliptic curves which are isogenous via an (unknown) isogeny ϕ : E → E′.
To obtain information about the degree of ϕ, we use pairings:
The (reduced) Tate pairing (assume that µm ⊂ Fq):

Tm : E(Fq)[m]× E(Fq)/mE(Fq) // µm ⊂ Fq

(P,Q) � // Tm(P,Q)

is a non-degenerate bilinear pairing which is compatible with isogenies as follows:

Tm(ϕ(P ), ϕ(Q)) = Tm(P,Q)deg(ϕ).

Since the pairings are always m-th roots of unity, whenever they are non-trivial we can compare the exponents
and obtain degϕ mod m. Unlike the Weil-pairing, there can be non-trivial self-pairings Tm(P, P ) 6= 1. So
we only need to find an image ϕ(P ) for a point P ∈ E(Fq)[m] to be able to reveal the degree degϕ mod m.

Obstructions: we do not know anything about the secret isogeny ϕ : E → E′.

1. By rationality, we note that
ϕ(E(Fq)[m]) ⊂ E′(Fq)[m]

but we cannot pinpoint the exact image of a single point.

Fix 1 Look for P ∈ E and P ′ ∈ E′ with ϕ(P ) ∈ 〈P ′〉. This is easier to arrange but we will lose information:
we will only be able to conclude whether degϕ is a square (mod m) or not.

2. There are infinitely many such isogenies: for any representative a of [a] there is an isogeny ϕa : E → E′.

The degree of the isogeny ϕa is N(()a).

Fix 2 If we can conclude whether degϕ is a square modm or not, since we do not get to choose one specific
isogeny, this answer needs to be the same for every isogeny possible. In particular, the answer is the
same for all ideals a ∈ [a]. Moreover, since degrees are multiplicative, we would obtain a (quadratic)

character of cl(O). Genus theory supplies values of m such that [a] 7→
(

N(a)
m

)
is a quadratic character

on cl(O).

First we explain why we lose information with Fix 1. Suppose P ∈ E(Fq)[m] and P ′ ∈ E′(Fq)[m] with
ϕ(P ) ∈ 〈P ′〉, that is, ϕ(P ) = kP ′ for some k. Assume also Tm(P, P ) 6= 1 and m odd prime.

Then we can compute
Tm(ϕ(P ), ϕ(P )) = Tm(P, P )deg(ϕ)

Tm(ϕ(P ), ϕ(P )) = Tm(kP ′, kP ′) = Tm(P ′, P ′)k
2

And conclude
Tm(P, P )deg(ϕ) = Tm(P ′, P ′)k

2
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But Tm(P, P ) = ζm and Tm(P ′, P ′) = ζ ′m are m-th roots of unity, so

ζ ′m = ζem

for some integer e and so
deg(ϕ) ≡ k2 · e (mod m)

for the unknown k. Since we can compute e but we do not know k, we can determine degϕ only up to
squares modm.

5.1 Fix 1

How do we find P ∈ E(Fq)[m] and P ′ ∈ E′(Fq)[m] with ϕ(P ) ∈ 〈P ′〉?
This is the case when valm(#E(Fq)) = 1: since m1 is the only power dividing #E(Fq) (and since E′(Fq))

has to have the same number of points, by Tate’s theorem), the Fq-rational m-torsion is:

E(Fq)[m] ∼= Z/mZ, and E′(Fq)[m] ∼= Z/mZ,

and we’ve already noted for any isogeny ϕ with gcd(degϕ,m) = 1:

ϕ(E(Fq)[m]) ⊂ E′(Fq)[m] = 〈P ′〉.

The reduced Tate pairing is non-trivial (assume µm ⊂ Fq):

Tm : E(Fq)[m]× E(Fq)/mE(Fq)→ µm ⊂ Fq

and E(Fq)[m] is a set of representatives of E(Fq)/mE(Fq).
So under conditions m|q − 1 and valm(#E(Fq)) = 1 we succeed.

In the paper we argue that these conditions are not necessary and deal with all possible cases:

• if there is no m-torsion or µm 6⊂ Fq, then we move to an extension of the field Fq;

• using walks on isogeny-volcanoes, we can control the m-torsion and so we can assume that E(Fq)[m∞]
is cyclic, generated by a point Q;

• it is no longer enough to consider self-pairings, instead, we use points P ∈ E(Fq)[m] and Q ∈ E(Fq)[mν ]
such that mν−1Q = P .

5.2 How to do Fix 2

Recall the problem: There are infinitely many isogenies

ϕ : E → E′ = [a] ? E,

one for each representative a of the ideal class [a], the degrees of the isogenies are the norms N(a).
Using the m-th Tate pairing evaluated at special points, we hope to determine whether degϕ = N(()a) is

a square modm. This answer has to be the same for all isogenies, so the answer is a property of [a] and gives
a quadratic character on the class group cl(O). But quadratic characters are described by genus theory.

Theorem 5.1 (Genus theory). Let O be an order of discriminant ∆ in an imaginary quadratic field. Write
∆ = −2a · b and b =

∏r
i=1m

ei
i for distinct odd primes mi. All quadratic characters of cl(O) are given by

(products of):

• for every odd prime m|∆:

χm : cl(O)→ {±1} [a] 7→
(

N(a)

m

)
where a is any representative of [a] satisfying gcd(m,N(a)) = 1.
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• Define

δ : a 7→ (−1)(N(a)−1)/2 ε : a 7→ (−1)(N(a)2−1)/8

if ∆ = −4n, extend the set of characters by

1. δ if n ≡ 1, 4, 5 (mod 8),

2. ε if n ≡ 6 (mod 8),

3. δε if n ≡ 2 (mod 8).

There is one relation between these characters:

χe1m1
· · · · · χerr · δ

b+1
2 mod 2 · εa mod 2 ≡ 1 on cl(O).

6 Conclusions

We have elliptic curves E,E′ ∈ È `(O, t) connected by a secret isogeny class E′ = [a]?E for some [a] ∈ cl(O).
If we have for an odd prime m|∆:

• such that χm is non-trivial,

whenever ∆ 6= −m,−4m for a prime m ≡ 3 mod 4,

• there is a pair of points P ∈ E(Fq)[m] and P ′ ∈ E′(Fq)[m] satisfying P 7→ kP ′,

e.g. whenever val(#E(Fq)) = 1 ,

• and the self-pairing Tm(P, P ) 6= 1 is non-trivial,

e.g. whenever val(#E(Fq)) = 1 and m|q − 1,

then we can compute

χm([a]) =

(
N(a)

m

)
just from the elliptic curves E and E′: even though we need to find suitable torsion points, compute

Tate pairings and compute a discrete logarithm on roots of unity, we are not using any information about
the ideal class [a] or even about the class group cl(O). The class group cl(O) can be completely unknown
for us.

This result is surprising because the group action is supposed to hide the structure of the class group,
but we are able to compute information about the group: genus theory characters allow us to compute the
2-torsion of the class group. Equivalently, we determine the coset in cl(O)/ cl(O)2 of the class [a].

These computations cannot be used to attack the vectorization/GAIP problem, but they can be success-
fully used to attack schemes based on the Decisional Diffie-Hellman problem for the class group actions, e.g.
[5]. The running time depends on m: it is in O(m · polylog(p)). The attack runs in polynomial time in log p
in the following cases:

1. ordinary curves [4, 7, 5]: whenever # cl(O) is even and there is a small odd divisor of disc(O), which
is (heuristically) a density 1 set of orders O. In particular, it works for all setups proposed in [5],

2. supersingular curves: whenever p ≡ 1 mod 4. This is not the case for CSIDH [2] or CSURF [1, 6]
(they use p ≡ 3 mod 4).
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