
Bruhat–Tits trees and supersingular elliptic curves

Jana Sotáková
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Abstract

These are notes accompanying the two talks I gave about my joint work with Laia
Amorós, Annamaria Iezzi, Kristin Lauter, and Chloe Martindale, Explicit connections
between supersingular isogeny graphs and Bruhat–Tits trees([1]. The first talk was at
the Leiden Algebra, Geometry, and Number Theory Seminar on March 15, 2021 and
the second at the RTG seminar at Clemson University on March 22, 2021. I would
like to thank the organizers of these seminars to give me an opportunity to speak and
share my research at their seminars.
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1 Dictionary

Here we give a short dictionary of the terms we will need in the following discussion. Every-
thing happens over Fp2 , which is without loss of generality for supersingular elliptic curves.
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Finite field Fp2 for a prime p > 3, for simplicity also p ≡ 3 mod 4.

Elliptic curve E : y2 = x3 + ax + b for some a, b ∈ Fp2 with 4a3 + 27b2 6= 0 . We
consider elliptic curves up to isomorphism, that is, an invertible change of coordinates
x, y 7→ ax+ by, cx+ dy: the ‘same’ equations describes the same geometric object.

Rational points E(Fp2) = {P = (u, v) ∈ F2
p2 : v2 = u3 +au+ b}∪{OE} form a finite abelian

group, with the point at infinity OE being the neutral element.

supersingular elliptic curves , pick your favorite definition. For instance, p | |E(Fp2)| − 1.
Or E(Fp2) ∼= Z/(p+ 1)× Z/(p+ 1) (this is without loss of generality).

j-invariant j(E) = 1728 4a3

4a3+27b2
, used as labels for supersingular elliptic curves, for which

j(E) ∈ Fp2 . The j-invariant also gives the smallest field over which an elliptic curve
can be defined, so all supersingular elliptic curves can be defined over Fp2 .

Torsion subgroups: we denote by E[`k] the points of E of order dividing `k. In general,
these points may not be defined over Fp2 but over higher extensions, but for the SIDH
setting, the points we will consider will be defined over Fp2 .

Isogeny is a rational map ϕ : EA → EB, which is also a group homomorphism. Isogenies
work just like quotient maps in groups:

• kerϕ is a subgroup of EA,

• for any subgroup H get a map EA → EA/H with kernel H,

• degree degϕ = # kerϕ for separable isogenies

• isogeny of degree ` ←→ subgroup of size ` in EA[`]

2 Motivation

We examine the ‘extra’ information coming from isogeny-based protocols.

SIDH key exchange

In isogeny-based cryptography, Alice and Bob communicate on a public channel (which
anyone can listen in on) and want to obtain an elliptic curve EAB using isogenies, in a way
that nobody can compute EAB just by looking at their communication.

In the SIDH protocol, Alice and Bob proceed as follows:

1. First, they agree on a starting elliptic curve E.

2. Alice then chooses a secret point RA ∈ E0[2
a] and computes the secret isogeny ϕA :

E → EA = E/〈RA〉, Bob similarly chooses a secret point in RB ∈ E[3b] and computes
the secret isogeny ϕB : E → EB = E/〈RB〉.
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3. Alice then sends her elliptic curve EA to Bob, Bob sends his elliptic curve EB to Alice.

4. Bob then computes EA/〈RB〉 and Alice computes EB/〈RA〉.

5. Now both Alice and Bob share the elliptic curve EAB = E/〈RA, RB〉

However, to compute EAB from EA, Bob needs to know ϕA(RB) the image of his point RB

under Alice’s isogeny ϕA. Either is a secret which they cannot share directly.

Torsion points

To circumvent this, in the setup, Alice and Bob also agree on public bases for the torsion
groups PA, QA ⊂ E[2a] and PB, QB ⊂ E[3b].

• Bob chooses his secret point as RB = PB + rBQB;

• Alice publishes not just EA but also ϕA(PB), ϕA(QB);

• Bob can compute ϕA(RB) = ϕA(PB) + rBϕA(QB).

Therefore, the SIDH key exchange setup does not just specify elliptic curves from which
we compute isogenies, but also bases of (rather large) torsion groups.

Known endomorphism rings

Essentially the only way we can find supersingular elliptic curves is by starting from a
known supersingular elliptic curve and computing some isogeny. However, this procedure
means that we almost always known the endomorphism ring: not just as an abstract ring
but with an explicit representation of the generators and endomorphisms on E.

Certainly for the starting curves in SIKE, we do know the endomorphism ring and by
constructing their isogenies, Alice or Bob can also compute the endomorphism rings of their
curves EA, EB.

Isogeny graphs vs extra information

Bob computes his isogeny
ϕB : E → EB = E/〈RB〉

as a sequence of `-isogenies, hence giving him a secret path of length n in the supersingular
isogeny graph G`:

• vertices are elliptic curves, up to isomorphism,

• edges are `-isogenies.
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In this note, we argue that Bruhat–Tits trees are better at bookkeeping all this infor-
mation than just considering supersingular isogeny graphs, which keep track of the elliptic
curves.

Bruhat–Tits tree T` � supersingular isogeny graph G`
E,End(E), 〈PA, QA〉, 7→ E

3 Background

We revisit some of the background information on elliptic curves and endomorphism rings.

3.1 Endomorphism rings

For simplicity, we let p ≡ 3 mod 4.

Definition 3.1 (The quaternion algebraBp,∞). The quaternion algebra Bp,∞ is the Q-algebra
generated by 1, i, j, k with i2 = −1 and j2 = −p and ij = −ji = k. Note that also k2 = −p.

Let E/Fp2 be a supersingular elliptic curve. Then End(E) can be embedded as a maximal
order in the quaternion algebra Bp,∞. The identification is as follows:

• an endomorphism ϕ corresponds to some α = a+ bi+ cj + dk with a, b, c, d ∈ Q,

• the dual endomorphism ϕ̂ is then α = a− bi− cj − dk,

• the degree degϕ is the reduced norm nrd(α) = a2 + b2 + pc2 + pd2.

• composition of isogenies is the multiplication in Bp,∞.

Example 3.2. The endomorphism ring of the curve E : y2 = x3 + x:
Define i, j : E → E as the maps i(x, y) = (−x,

√
−1y) and j(x, y) = (xp, yp). Then we

have

End(E) =

〈
1, i,

i+ j

2
,
1 + k

2

〉
Z

=

〈
1 + j

2
,
i+ k

2
, j, k

〉
Z
.

So for E, we not only know the endomorphism ring abstractly, but also as explicit maps on
E. This is a very strong property that allows one to do more than for just any supersingular
elliptic curve. A convincing example of what happens if we do know information about
torsion points and understand the endomorphism ring well, is the paper [2]. We also note
that knowing both End(E) and End(E ′), we can compute the isogeny ϕ : E → E ′ [4].

Theorem 3.3 ( Deuring’s correspondence, first version). For every maximal order O ⊂ Bp,∞
there is a supersingular elliptic curve E with

End(E) ∼= O.
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Two elliptic curve E,E ′ satisfy End(E) ∼= End(E ′) (as maximal orders, that is, they are
conjugate by an element in Bp,∞) if and only if

j(E) = j(E ′) or j(E) = j(E ′)p.

Write O = End(E) and O′ = End(E ′). An isogeny ϕ : E → E ′ gives us an ideal I ⊂ O:

I = {α ∈ O : α(P ) = OE′ for all P ∈ kerϕ}

This ideal satisfies
OR(I) = O, OL(I) = O′

Such ideals are called connecting ideals for the maximal orders O,O′.
In simpler words, the correspondence between isogenies and ideals is as follows:

ϕ : E → E ′ an isogeny

kerϕ

post-composing with β ∈ End(E ′):

β ◦ ϕ : E → E ′ → E ′

right ideal I ⊂ O
torsion subgroup E[I]

multiplying β · I
β · I ∼ I

By post-composing with an endomorphism on E ′, we do not change the kernel of ϕ.
‘Morally speaking’, the isogeny is ‘the same’. This vague reasoning can be made precise:

We define the class set Cl(O) = {[I] : I ∼ J if and only if I = αJ for α ∈ B×p,∞}.

Theorem 3.4 ( Deuring’s correspondence, second version). Let E be a supersingular elliptic
curve and identify End(E) = O ⊂ Bp,∞. Consider the class set Cl(O) of invertible right-
ideals of O.

The set Cl(O) is in a bijection with supersingular j-invariants in Fp2.

The bijection induces the following translations between isogenies and ideals:

elliptic curve E

isogeny ϕ : E → E ′

`-isogeny

End(E ′)

order O = End(E)

ideal I ⊂ O
ideal of norm `

OL(I) = {β ∈ Bp,∞ : β · I ⊂ I}.

For two elliptic curves E,E ′, we briefly explain how to use the knowledge of endomor-
phism rings to obtain an isogeny between them.

1. If we know End(E) = O and End(E ′) = O′, it is easy to find a connecting ideal : for
instance, if M = [O : O ∩O′], then

I(O,O′) = {α ∈ Bp,∞ : αO′ᾱ ⊂MO′}

is a connecting ideal;
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2. it is ‘easy’ to find an equivalent ideal of smooth norm, using the KLPT algorithm [4];

3. from an ideal of smooth norm, it is easy to reconstruct an isogeny E → E ′, as a
sequence of isogenies of small norm.

Finally, we need the following information about localizing the endomorphims rings of
supersingular elliptic curves. Recall the notation: E/Fp2 supersingular elliptic curve, identify
End(E) ∼= O maximal order in the quaternion algebra Bp,∞.

Lemma 3.5 (Localizing). For ` 6= p:

1. we have Bp,∞ ⊗ Z` = M2(Q`),

2. maximal order O ⊂ Bp,∞ embeds as a maximal order O` = O ⊗ Z` ⊂M2(Q`),

3. all maximal orders in M2(Q`) are conjugate to M2(Z`).

One way to think about this: M2(Z`) is then endomorphism ring of the standard lattice
Z` × Z`, which we write as the identity matrix. If the maximal order O` is conjugate to
M2(Z`) by A, then O` is the endomorphism ring of the lattice A.

Next, we identify this lattice A as the Tate module of E.

3.2 Tate module

Let ` 6= p be a prime. For any n, we know that (as abelian groups), we have

E[`n] ∼= Z/`nZ× Z/`nZ.
Moreover, there are connecting maps E[`n]→ E[`n−1], which are multiplications by [`], and
are surjective. By taking a projective limit over the system of E[`n] with the connecting
maps, we get the Tate module:

T`(E) = lim←−E[`n].

Abstractly, we have T`(E) ∼= Z` × Z`, a Z`-lattice of rank 2.
Because the torsion subgroups E[`n] may only be defined over an extension of fp2 , in

general, there is also a Galois action on T`(E). However, for supersingular elliptic curves
(over Fp2), the Frobenius action is by a scalar. In particular, the Frobenius action commutes
with everything, so all maps are Galois-equivariant maps.

Theorem 3.6 (Endomorphisms and Tate modules). For supersingular elliptic curve E,E ′/fp2
we have

End(T`(E)) ∼= End(E)⊗Z Z`

Hom(E,E ′)⊗Z Z`
∼= Hom(T`(E), T`(E

′))

This means that isogenies of degree `k correspond to maps of Tate modules, which are
just linear maps over Z`. Moreover, remember that End(E)⊗ Z`

∼= M2(Z`).
We note that despite Tate modules being `-adic, having a basis (Pn, Qn) ⊂ E[`n] allows

us to reduce everything to M2(Z/`nZ), which we can represent by integer matrices. This
has the following important consequence: isogenies of degree dividing `k with k ≤ n give
matrices in M2(Z) with determinant `k.
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4 Bruhat–Tits tree

Remember that the localization of the endomorphism ring End(E)⊗Z` is the endomorphism
ring of the Z`-lattice T`(E). We look deeper into Z`-lattices.

Consider homothethy classes of Z`-lattices (of rank 2) Λ ⊂ Q2
` = V :

Λ = Z`u+ Z`v for some u, v ∈ V linearly independent

= 〈u, v〉
Λ ∼ Λ′ ←→ Λ = αΛ′ for some α ∈ Q∗`

Definition 4.1 (Adjacent lattices). The homothethy classes of lattices Λ,Λ′ are adjacent if
for some representatives

`Λ ( Λ′ ( Λ.

Being adjacent is a symmetric relation (multiply all the lattices in the definition by ` and
remember that Λ ∼ `Λ). Because [Λ : `Λ] = `2, being adjacent means that we can choose
representatives Λ and Λ′ such that Λ′ ⊂ Λ with exact index `.

Definition 4.2 (The Bruhat–Tits tree). The Bruhat–Tits tree T` is the graph:

• with vertices given by homothethy classes of lattices,

• edges between adjacent classes of lattices.

Theorem 4.3. The Bruhat–Tits tree T` is a (`+ 1)-regular infinite tree for every `.

We take another look at the definition, which we can compare to a picture of the Bruhat–
Tits tree in Figure 1.

Let Λ = 〈u, v〉 = Z`u + Z`v represent a vertex in T`. We can write it as a matrix (using
column vectors)

M = (u|v) ∈ GL2(Q`).

Then GL2(Q`) acts on the lattices from the left. One can show that GL2(Q`) acts transitively
on the set of lattices, so by computing the stabilizer of any vertex, we can compute:

vertices of T` = GL2(Q`)/ (Q∗`GL2(Z`)) .

This is the same as simply consider matrices up to scaling and a change of basis.
The adjacent lattices are given by

〈`u, v〉 and 〈u+ iv, `v〉 for i = 0, . . . , `− 1

(this is one of the choices and it depends on the choice of a particular basis (u, v)). In matrix
form, we can get all the neighboring vertices as

M · ( ` 0
0 1 ) and M · ( 1 0

i ` ) , for i = 0, . . . , `− 1.

We call the first matrix the direction infinity and the latter directions i. Note that a path
in the Bruhat–Tits tree is then a sequence of these direction, which we can either represent
by the directions, individual matrices, or a product of the matrices.

The following is the essential result about Bruhat–Tits trees for isogeny cryptographers:
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Figure 1: The Bruhat–Tits tree T3 for ` = 3. Picture from [1].

Theorem 4.4. For a certain Γ ⊂ GL2(Q`), there are bijections

Γ\T` ←→ Cl(O)←→ supersingular isogeny graph G`.

We make this Γ explicit in a moment in Section 4.2.

4.1 Mapping elliptic curves to the Bruhat–Tits tree

Let E/Fp2 be a supersingular elliptic curve. To map E to the Bruhat–Tits tree, we map it
to its Tate module T`, considered as a lattice in Q2

` . Isogenies of elliptic curves map to linear
map of lattices.

This translation is rather explicit. For instance, if P,Q ∈ T`(E) are a basis of the
Tate module and P1, Q1 ∈ E[`] the projections onto the `-torsion, then the isogeny E →
E/〈P + iQ〉 corresponds to the edge ( 1 0

i ` ).
Moreover, if we only have a basis of E[`n], say Pn, Qn, we know that it can be extended

to some basis P,Q ⊂ T`(E), which identifies

T`(E)←→
(

1 0
0 1

)
∈ T`

End(E)⊗ Z` ←→M2(Z`)

But if we only have Pn, Qn, we can still recover the tree T` up to distance n. We call this
the truncated tree.
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Let us now specialize to the SIKE world: take prime p = 2a · 3b − 1. This gives us
naturally two large torsion subgroups E[`n]: the groups E[2a] and E[3b] (the discussion is
the same for either).

We start with the elliptic curve E : y2 = x3 + x/Fp2 (in fact, y2 = x3 + 6x2 + x, but the
discussion is the same).

We are given a basis Pn, Qn ⊂ E[`n], so
we can construct1 the truncated Bruhat–Tits
tree with T`(E)↔ ( 1 0

0 1 ) .
When generating secret points, Alice/Bob

choose 0 ≤ m < `n and compute

R = Pn +mQn.

This is the same as ignoring the branch from
E that goes in the direction ∞.

Then

E/〈R〉 ←→ ( 1 0
m `n ) .

If we write m =
∑

j ij`
j, then the path

E → E/〈R〉 corresponds to walking on
the Bruhat–Tits tree by following directions
(i0, . . . , in−1).

Figure 2: The SIKE-tree for ` = 3.

We give the vague name SIKE-tree (cf. Figure 4.1) to the subtree of the Bruhat–Tits
tree spanned by the root E and all the possible public keys E/〈Pn +mQn〉.

Remember that going from the Bruhat–Tits tree T` to the supersingular isogeny graph
G`, we need to quotient by some group Γ. However:

Theorem 4.5 ([5]). The SIKE-tree as a subtree of T` is basically the same as the corre-
sponding subgraph of G`.

That is, the when we map the SIKE-tree to G`, we obtain an almost-tree: typically only
a few (0 or 2) pairs of leaves will be glued.

4.2 Quotients of the Bruhat–Tits tree

Fix an embedding Φ : Bp,∞ → M2(Q`). Typically we take an embedding induced by the
identification End(E) ∼= O ↪→ M2(Z`) because we want to keep track of the endomorphism
rings.

1That is, describe, set up, we can’t enumerate the tree for cryptographic sizes.
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Then we can describe the supersingular isogeny graph as a quotient of the Bruhat–Tits
tree as:

Γ\T` = Γ\GL2(Q`)/Q∗`GL2(Z`)

for Γ = Φ(O[1/`]×).
We can replace Γ by

⋃
k Φ(Uk) with Uk = {α ∈ O : norm(α) = `k}. If we only want the

tree up to distance n, we only need to consider the first n such sets.
Moreover, replacing Γ by Γ+ =

⋃
k Φ(U2k), the graph Γ+\T` is the graph of the special

fiber of a certain Shimura curve. Sage can compute with these in the BTQuotient module
based on [3]. This code works by first computing the whole quotient Γ+\T`, which is of
course impossible for cryptographic sizes, but that is easily adaptable.

Moreover, because we start with the embedding O ↪→ M2(Z`), we have enough tools
to translate the local information we get from the Bruhat–Tits tree (such as changing the
endomorphism rings of the lattices, etc) to global information, like connecting ideals, endo-
morphism rings of elliptic curves, norm forms.

5 Conclusions

These are our main selling points:

• Isogeny problems naturally come with information about torsion points and endomor-
phism rings, and unlike supersingular isogeny graphs, Bruhat–Tits trees can keep track
of this information.

• There are bijections:

Γ\T` ∼= Cl(O) ∼= supersingular `-isogeny graph G`.

The latter is well-known to isogeny-mathematicians/cryptographers and has yielded
amazing results. We propose going to Bruhat–Tits trees and study this amazing object
which we believe will yield more information about isogenies.

The first bijection is also known to people who study quaternion algebras and Shimura
curves: if we ask them what they know, we might obtain yet new perspectives on our
isogeny problems.

• It is easy to compute with the Bruhat–Tits tree: everything in terms of matrices in
M2(Z`); can be lifted to integer matrices (with some precision). But this is the same
as building the tree from a basis of E[`n], which is exactly what we get in isogeny-
problems, so no information is lost.

• Sage can compute with Bruhat–Tits trees in the BTQuotient module. This code is
easy to extend to be able to experiment with examples of cryptographic size.
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• Because of our setup, we can translate local information to global information. Walk-
ing on the Bruhat–Tits tree, we can keep track of arithmetic information, e.g. endo-
morphism rings and norm forms. This is the same as using quaternion algebras, bu
Bruhat–Tits trees can also take torsion points into account.

• (Our most speculative application/current promising project): Bruhat–Tits trees come
with directions: ( 1 0

m `n ) ←→ (i0, . . . , in−1) for m =
∑

j ij`
j. These are dependent

on various choices, however, these choices have already been made in the setup of
SIDH/SIKE protocols. Our goal: are elliptic curves in one direction different from
other directions? Can we predict how the arithmetic invariants of elliptic curves will
change depending on which directions we take (that is, without computing it first)?

We are continuing to work in this amazing new direction and hope to give you more
results soon. In any case, we do believe Bruhat–Tits trees are worth learning about and will
lead to new perspectives on isogeny graphs.
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