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Abstract

Protocols based on isogenies of elliptic curves are one of the hot topic in post-quantum cryptography,
unique in their computational assumptions. This note strives to explain the beauty of the isogeny
landscape to students in number theory using three different isogeny graphs - nice cycles and the Schreier
graphs of group actions in the commutative isogeny-based cryptography, the beautiful isogeny volcanoes
that we can walk up and down, and the Ramanujan graphs of SIDH.

This is a written exposition 1 of the talk I gave at the ANTS summer school 2020, available online
at https://youtu.be/hHD1tqFqjEQ?t=4.
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1 Introduction

There are three different aspects of isogenies in cryptography, roughly corresponding to three different isogeny
graphs: unions of cycles as used in CSIDH, isogeny volcanoes as first studied by Kohel, and Ramanujan
graphs upon which SIDH and SIKE are built.

We start off with introducting elliptic curves, isogenies of elliptic curves and endomorphisms rings in
Section 2. Then we talk about the theory of Complex Multiplication and explain how the commutative
isogeny-based protocols (such as CSIDH) work in Section 3. We mention briefly how considering all `-
isogenies allows us to build isogeny volcanoes in Section 4. Finally, we move to the case of supersingular
elliptic curves and the Ramanujan graphs in Section 5.

2 Background

2.1 Elliptic curves

An elliptic curve E over a finite field Fq (for q = pn with p > 3) is an algebraic group given by an equation

E : y2 = x3 + ax+ b, a, b ∈ Fq, 4a3 + 27b2 6= 0

That is, it is an algebraic variety defied as (the projective closure of) the curve E, which is also a group
and the group law is given geometrically.

The points of E are pairs P = (xP , yP ) ∈ (Fq)2 satisfying the equation and the point at infinity OE (with
projective coordinates (0 : 1 : 0)).

The group law on an elliptic curve is given geometrically:

P +Q+R = OE ←→ P,Q,R lie on a line

and can also be given by algebraic formulae that only depend on the coefficients a, b of E.
Later will label E by the j-invariant

j(E) = 1728
4a3

4a3 + 27b2
.

The j-invariant is an Fq-isomorphism invariant but not Fq-isomorphism.
The subgroup of rational points E(Fq) is given by the point at infinity OE and points (x, y) of E with

both coordinates in Fq. Since the group law is given by formulae in a, b ∈ Fq, this is a subgroup.
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Figure 2.1: Rational points of E : y2 = x3 + x+ 2 over F37. There are 40 rational points, including OE.

Theorem 2.1 (Hasse-Weil). There are #E(Fq) = q + 1− t points on E where t satisfies |t| ≤ 2
√
q.

Definition 2.2. Let E/Fq be an elliptic curve with q + 1− t points.

• If p - t then E is called ordinary,

• if p | t then E is called supersingular.

Elliptic curves with the same j-invariant are either all ordinary or all supersingular elliptic curves.

2.2 Isogenies

Definition 2.3. An isogeny (defined over Fq) between elliptic curves E,E′/Fq is a rational map

ϕ : E −→ E′

(x, y) 7−→ (f(x), y · g(x))

for some f, g ∈ Fq(x), which is also a group homomorphism.

Definition 2.4. The degree of the isogeny is the degree of ϕ as a rational map.

Therefore, the degree is multiplicative. An isogeny of degree ` is called an `-isogeny.

Example 2.5. Multiplication by m for m ∈ Z: denoted [m] : E → E, sends P 7→ [m]P . This is an isogeny
because the group law is defined algebraically. Moreover, it is Fq-rational and has degree deg[m] = m2.

• multiplication by 2: degree 4

[2] : (x, y) 7→
(
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
, y · g(x)

)
• multiplication by 3: degree 9

[3] : (x, y) 7→
(

x9 + lot

(3x4 + 6ax2 + bx− a2)2
, y · g(x)

)
Fact 2.6. Any isogeny has a finite kernel, which can be read off from the denominators. If p - m then
degϕ = # kerϕ.
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Fact 2.7. For any isogeny ϕ : E → E′, there exist a dual isogeny ϕ̂ : E′ → E with

ϕ̂ ◦ ϕ = [degϕ].

Example 2.8. A 5-isogeny over F37:

E : y2 = x3 + x+ 2 −→ E′ : y2 = x3 + 31x+ 33

(x, y) 7−→
(

36(x5 + 8x4 + 3x3 + 3x2 + 3x+ 14)

(x2 + 4x+ 15)2
, y · g(x)

)
Has kernel {OE} ∪ {(x, y) : x2 + 4x+ 15 = 0} = {OE , (8, 2) , (8, 35) , (25, 1) , (25, 36)}

Figure 2.2: Kernel of the isogeny ϕ (in red).

The dual isogeny is

ϕ̂ : y2 = x3 + 31x+ 33 −→ y2 = x3 + x+ 2

(x, y) 7−→
(

34x5 + 28x4 + 18x3 + 25x2 + 5x+ 33

(x2 + 20x+ 34)2
, y · g(x)

)
which is again a 5-isogeny.

2.3 Endomorphisms

Let E/Fq be an elliptic curve. We define the rational endomorphism ring

EndFq (E) = {Fq-isogenies ϕ : E → E} ∪ {0}.

Note that not all endomorphisms of E need to be defined over Fq. It is customary to consider the ring
End(E) of all endomorphims of E but in the following, we will see that studying EndFq (E) is easier in the
context of isogeny-based cryptography.

Definition 2.9. The Frobenius endomorphism for E/Fq is the endomorphism

πE : E −→ E

(x, y) 7−→ (xq, yq).

The Frobenius endomorphism depends on the field of definition of E and is an isogeny of degree deg π = q.
It is an important endomorphism because of the following:

Fact 2.10. For an elliptic curve E/Fq with #E(Fq) = q + 1− t, the Frobenius endomorphims satisfies

π2 − tπ + q = 0.
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We call t = trπ the trace of Frobenius.
But from Hasse-Weil’s theorem, we know that |t| ≤ 2

√
q so t2 − 4q ≤ 0.

Theorem 2.11 (Waterhouse). For the rational endomorphism ring EndFq
(E), only the following two options

are possible:

1. If t2 − 4q < 0 then Q(π) is an imaginary quadratic field and

EndFq
(E) ↪→ Q(π) = Q(

√
t2 − 4q)

as an order O containing Z[π].

2. If t2 − 4q = 0 then π = ±√q = ±pn/2 and

EndFq
(E) ↪→ Bp,∞

as a maximal order O in a quaternion algebra ramified only at p and ∞.

Remark 2.12. We give a number of references for the above statement.

1. The above statement is Theorem 4.1 in Waterhouse’s thesis, available at https: // eudml. org/ doc/
81852 .

2. For CM theory (orders in imaginary quadratic fields),

• detailed: read Cox’s Primes of the form x2 + ny2 (chapter 7 to understand ideals in orders and
chapter on EC).

• Sutherland’s lectures on elliptic curves give an amazing exposition https: // ocw. mit. edu/

courses/ mathematics/ 18-783-elliptic-curves-spring-2019/ lecture-notes/

3. For quaternion algebras,

• Kohel’s thesis chapter 6-7 is a good resource but it fairly advanced http: // iml. univ-mrs. fr/

~ kohel/ pub/ thesis. pdf

• A more elementary/detailed write-up of the correspondence is chapter 42 of John Voight’s book
https: // math. dartmouth. edu/ ~ jvoight/ quat. html

• to get comfortable with quaternions you can read Keith Conrad’s blurb on quaternions https:

// kconrad. math. uconn. edu/ blurbs/ ringtheory/ quaternionalg. pdf

Example 2.13 (Examples of endomorphism rings). We give examples of the above cases.

1. The elliptic curve E/F31 given by E : y2 = x3 + x+ 4:

#E(F31) = 26 = 1− 6 + 31 −→ t = 6 and t2 − 4q = −88 6= 0.

The Frobenius satisfies
π2 − 6π + 31 = 0 −→ π = 3±

√
−22.

So EndF31(E) is an order in Q(π) = Q(
√
−22) containing Z[π] = Z[

√
−22]. But Z[

√
−22] is the

maximal order in Q(π), so
EndF31

(E) = Z[
√
−22].
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2. The elliptic curve E/F31 given by E : y2 = x3 − x:

#E(F31) = 32 = 1 + 0 + 31 −→ t = 0 and t2 − 4q 6= 0.

So EndF31
(E) is an order in Q(π) = Q(

√
−31).

Exercise: One can show

EndF31
(E) ∼= Z

[
1 +
√
−31

2

]
.

(Hint: Show that it cannot lie on the floor of a 2-volcano because there are too many 2-isogenies. Direct
way: show that E[2] ⊂ ker(π+ 1) and use the ‘factorization property’ for isogenies (not covered). This
is essentially proof of Theorem 2.7 in [8] https: // arxiv. org/ pdf/ 1310. 7789. pdf , works similarly
for any `. )

3. The elliptic curve E/F312 given by E : y2 = x3 − x:

#E(F312) = 1024 −→t = −62 = −2 · 31 = −2 · √q
and t2 − 4q = 0.

So EndF312
(E) is a maximal order in the quaternion algebra B31,∞.

One can show that

EndF312
(E) ∼= Z + Zi+ Z

i+ j

2
+ Z

1 + ij

2
,

with i2 = −1 and j2 = −31 and ij = −ji.
Note that this curve is just a base change of the curve above.

Exercise: convince yourself that Z
[
1+
√
−31
2

]
is a subring of EndF312

(E).

(Hint: what is (ij)2?)

2.4 From ideals to isogenies

For any (nonzero) ideal a ⊂ O we can produce a finite subgroup

E[a] = ∩α∈a kerα.

Definition 2.14. Let a be an ideal of O. The isogeny correspodning to a, denoted by ϕa : E → E/E[a], is
the isogeny with ker(ϕa) = E[a].

The degree of the isogeny is
degϕa = N(a).

Example 2.15. Take a prime ` and l = (`, π− 1) ⊂ O. We want to identify the isogeny correspodning to l.
So we need to intersect

• ker[`] = E[`] is the subgroup of `-torsion points,

• and ker(π − 1) = {P : π(P ) = P} = {(x, y) : xq = x and yq = y} = E(Fq) the group of rational points.

So E[l] = E[`] ∩ E(Fq) = E(Fq)[`], that is, the points in the `-torsion which are defined already over Fq.
As abelian groups,

E[`] ∼= Z/`Z× Z/`Z.
So the action of l = (`, π − 1) is given as:

1. If E(Fq)[`] = E[`] then ϕl is multiplication by `,

2. if E(Fq)[`] = 〈P 〉 then ϕl is the `-isogeny with kernel generated by rational `-torsion point P ,

3. if E(Fq)[`] = {OE} then ϕl is the identity.

6

https://arxiv.org/pdf/1310.7789.pdf


3 CM and commutative isogeny-based protocols

3.1 The main theorem of complex multiplication

Let E be an elliptic curve over Fq with q+ 1− t points and assume that t2− 4q 6= 0. Then EndFq
(E) = O is

an order in an imaginary quadratic field Q(π) and O contains Z[π]. From any ideal a ⊂ O we get an isogeny
ϕa : E → E/E[a].

Fact 3.1. If a ⊂ O is an invertible ideal, then E/E[a] has the same endomorphism ring O and trace t.

Fact 3.2. If a and b are in the same class in Cl(O), then

E/E[a] ∼= E/E[b] over Fq.

Denote
È `(O, t) = { elliptic curves E/Fq : EndFq

(E) ∼= O and tr(π) = t }/ ∼=Fq
.

Theorem 3.3 (The Main Theorem of Complex Multiplication). For any E,E′ ∈ È `(O, t) there exists a
unique class [a] ∈ Cl(O) such that

E′ = [a] ? E.

The group Cl(O) acts on È `(O, t) freely and transitively by ([a], E) 7→ [a] ? E.

Remark 3.4. Curves satisfying End(E) = O are said to have complex multiplication (CM) by O. The Main
Theorem of Complex Multiplication is usually stated about the Galois action on j-invariants of elliptic curves
with CM by O.

Probably the treatment of complex multiplication (over number fields) I liked the best was Lang’s Elliptic
functions (if you know about modular functions). The rest follows by reducing modulo a prime above p. You
can also consult my master’s thesis for a concise introduction

https: // jana-sotakova. github. io/ masters_ thesis_ sotakova. pdf .

3.2 Diffie-Hellman using groups

Alice and Bob wish to establish a shared secret over an insecure channel. They agree on

• an abelian group G (say G = (Z/pZ)∗ for a large prime p),

• an element g ∈ G that generates G, known order N = |G|.

Alice

a← Z/NZ

computes ga

receives gb

computes (gb)a

insecure channel

G, g of order N

gb
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ga

Bob

b← Z/NZ

computes gb

receives ga

computes (ga)b

So both Alice and Bob share gab.

The computational assumption is that from g, ga, gb one cannot compute gab (computational Diffie-
Hellman assumption). In particular, it is not possible to compute the secret exponent a from seeing only g
and ga (the discrete logarithm problem).

But this protocol is insecure against quantum computers (Shor’s algorithm).
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3.3 Diffie-Hellman using group actions

Suppose that Alice and Bob also have a free and transitive action of the group G on a set X:

G×X → X (g, x) 7→ g ? x.

Choosing x ∈ X gives a bijection X ↔ G but the set X hides the structure of G: there is no group law on
X that would allow us to take two elements of X and produce their composition in X.

Alice

a← Z/NZ

computes ga ? x

receives gb?

computes ga ? (gb ? x)

insecure channel

G, g of order N , x ∈ X

gb?x
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ga?x

Bob

b← Z/NZ

computes gb ? x

receives ga ? x

computes gb ? (ga ? x)

So both Alice and Bob share ga+b ? x.

The computational assumption is that it is not possible to compute ga+b ? x seeing only ga ? x and gb ? x
(parallelization). In particular, it is not possible to compute ga from seeing only x and ga ?x, which is called
the Group Action Inverse Problem (GAIP) or the vectorization problem, in analogy to finding the vector
connecting two points in an affine space.

This protocol is no longer breakable by Shor’s algorithm, because an adversary only sees elements in a
set, not a group, hence cannot compute with the elements of X.

Remark 3.5. For more information, read either Couveignes’ paper https: // eprint. iacr. org/ 2006/

291 or Smith’s recent excellent exposition https: // eprint. iacr. org/ 2018/ 882 for the group action
paradigm. Note that you don’t need to use the exact DH-protocol with just hiding the group elements using
the action, but it is easier to explain the parallel this way.

3.4 Commutative isogeny-based cryptography

We have a free and transitive group action

Cl(O)× È `(O, t)→ È `(O, t) ([a], E) 7→ [a] ? E.

This is a promising construction (originating in [6] and [14]):

X we hide* Cl(O) using the set of elliptic curves È `(O, t)
(actually, almost always leaks information about 2-torsion, see [5])

X quantum-safe*
(subexponential quantum complexity, current research about how safe [2, 12] or https://csidh.

isogeny.org/analysis.html),

× we cannot compute Cl(O) so we cannot get a generator g,

X we can sample ideals from Cl(O),

× we cannot act with all ideals a ⊂ O because the norms are too big.
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But it is enough to choose which ideals we want to act by.

Example 3.6 (Computing the action for some ideals). Recall the action by ideals l = (`, π−1): if E(Fq)[`] =
〈P 〉 is cyclic, then the action is given by the `-isogeny

[l] ? E = E/〈P 〉.

So to compute the action of l = (`, π − 1), we only need to:

1. Find a rational point P ∈ E(Fq) of order `,
This is easily done by taking a random rational point on E and mutliplying it by (q + 1 + t)/`. This
fails with probability 1

` so we may have to repeat this step.

2. Compute the `-isogeny E → E/〈P 〉 using Vélu’s formulae [15].

The modern setup of the group action-based Diffie-Hellman is the following:

• Find elliptic curves E with

E(Fq)[`i] cyclic for lots of small primes `i,

• Only work with ideals li = (`, π − 1) and their products

a =
∏

leii ei small.

We can compute the action of such an ideal a by computing a sequence of `i-isogenies, each performed
ei times, in any order we choose (remember that ? is a group action by an abelian group).

Therefore, the secrets: are now the lists of exponents (e1, . . . , er). This goes back to [6].
The following are (examples of) the choices of the modern proposals:

• [7] use ordinary elliptic curves over a prime field Fp with #E(Fp) = q + 1− t divisible by lots of small
primes, eg. with points of order ` for every

` ∈ {3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723}.

• CSIDH [4] uses supersingular elliptic curves (t = 0) over Fp with p ≡ 3 mod 8, the order O = Z[
√
−p]

and #E(Fp) = p+ 1 divisible by lots of small primes, e.g.

p+ 1 = 4 · 3 · 5 · . . . · 373 · 587.

• CSURF [3] uses supersingular elliptic curves over Fp with p ≡ 7 mod 8, the order O = Z
[
1+
√
−p

2

]
and #E(Fp) = p+ 1 divisible by lots of small primes, e.g.

p+ 1 = 8 · 32 · . . . · 3̂47 · . . . · 3̂59 · . . . · 389.

3.5 Isogeny graphs

Recall that È `(O, t) is the set of Fq-isomorphism classes of E/Fq with EndFq
(E) = O and trπE = t. The

class group Cl(O) acts on È `(O, t). By repeated action of an ideal l = (`, π − 1) on È `(O, t), we obtain a
sequences of `-isogenies. If n is the order of [l] in Cl(O), then [ln] = [O]

E
l−→ [l] ? E

l−→ [l] ? ([l] ? E) = [l2] ? E
l−→ · · · l−→ [ln] ? E = E,

so the repeated action by l cycles back to E.

9



Definition 3.7. The `-isogeny graph G`(Fq) is the graph with

• vertices given by the classes in È `(O, t), labelled by the j-invariants,

• there is an undirected edge between [E1] and [E2] if there is an isogeny E1 → E2.

Note that this is the same as identifying isogenies if they differ by composition with isomorphisms over
Fq and by identifying dual isogenies.

Note that Alice and Bob’s secret key computation can be thought of as taking a walk from the starting
vertex E0 in the `1-isogeny graph G`1(Fq), then jumping to the corresponding vertex in the `2-isogeny graph
and so on. See Figures ??, ?? and ??.

On the other hand, the adversary sees these graphs G`i(Fq) overlapping: that is, the adversary does not
know whether Alice first decided to take an `i or `j isogeny or how many steps she took in which graph.

Example 3.8. Consider q = 461 = 2 · 3 · 7 · 11− 1 and O = Z[
√
−389] and t = 0.

It is easy to follow the walks in each of the graphs G`i(Fq).

Figure 3.1: G3(F461): the action of (3, π − 1)

(a) G7(F461) (b) G11(F461)

But the adversary sees the following entangled graph, and the computational assumptions underlying
commutative isogeny-based proposals can be paraphrased as follows: from a given vertex, it is difficult to find
a path back to the starting vertex (say top 0).

4 Other `-isogenies

Assume that ` - q. In the complex multiplication story, the rational endomorphism ring of E is an order in
an imaginary quadratic field Q(π) and invertible ideals of O = EndFqE correspond to `-isogenies. Moreover,
`-isogeny graphs G` are unions of cycles, so there are two `-isogenies from every E ∈ È `(O, t).
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Figure 3.3: The union of graphs G`(F461) for ` = 3, 7, 11.

Recall that an isogeny is given by its kernel and the kernel of an `-isogeny is a subgroup of size `. By
looking at the subgroups of size ` in

E[`] ∼= Z/`Z× Z/`Z,

we see that there are up to `+ 1 isogenies of degree ` defined over Fq.

Theorem 4.1 (Tate). Isogenous curves E and E′ over Fq have the same number of points, i.e.,

trπE = t = trπE′ .

Because the Frobenius endomorphism of any curve π is a root of x2 − tx + q, if EndFq (E) = O and
EndFq (E′) = O′, then both these orders contain Z[π] and lie in the same quadratic field Q(π).

A more detailed analysis is in David Kohel’s thesis.

Theorem 4.2 (Kohel). If E and E′ are `-isogenous by ϕ : E → E′, then

1. either O = O′,

2. or [O : O′] = `,

3. or [O′ : O] = `.

ϕ horizontal,

ϕ descending,

ϕ ascending.

Therefore, there is a tight connection between `-isogenies of elliptic curves and their endomorphism rings.

Definition 4.3. Define the component of E as the graph G = (V,E) with

• vertices V given by Fq-isomorphism classes of curves which are `k-isogenous to E,

• edges given by `-isogenies, up to Fq equivalence and dual isogenies (as before).

This component of E captures all the curves over Fq that can be reached from E by taking `-isogenies.
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V2

V1

V0

Figure 4.1: Example of a volcano of height 2.

Theorem 4.4 (Kohel’s theorem). For any E/Fq, the component of E is an isogeny volcano: There is a
partition of the vertices into disjoint sets V = V0 ∪ V1 ∪ . . . Vh such that

• the subgraph on Vh is a cycle

• the subgraph of Vi for i 6= h has no edges,

• isogenies from surface to floor are descending,

• isogenies from floor to surface are ascending,

• if i < h, every Ei ∈ Vi has exactly one neighbour Ei+1 ∈ Vi+1,

• every Ei ∈ Vi for i 6= 0 has `+ 1 neighbours.

The set Vh is called the surface, the set V0 is called the floor. Note that some authors flip the labelling
so that V0 is the surface and talk about the depth of the volcano instead.

All curves in Vi have the same endomorphism ring Oi and the curves on the floor satisfy

(O0)` = Z[π]`,

that is, localizing at `, the endomorphism ring O0 is as small as possible (the endomorphism ring always
contains Z[π]). Since the isogenies going towards the surface are ascending and the isogenies going towards
the floor are descending, knowing one endomorphism ring allows us to determine the endomorphism rings
of all the elliptic curves on this volcano.

Example 4.5. Assume that one the floor V0 have EndFq (E) = Z[π].
Going up the volcano we take an ascending isogeny to get an order O containing Z[π] with index `.

Suppose that the volcano is h steps high. Then the levels of volcano correspond to a sequence of orders with
successive index `:

O0 = Z[π] ⊂ O1 · · · ⊂ Oh.

Looking at discriminants, we have `2h | ∆Z[π] = t2 − 4q.

Therefore, to have a volcano of large height, we need a large power of ` to divide t2 − 4q.

Example 4.6 (Supersingular elliptic curves). For supersingular elliptic curves over Fp we always have
∆Z[π] = −p or −4p. Therefore, we recover cycles as in Section 3.5 for ` 6= 2 and volcanoes of at most 2
levels for ` = 2.
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Figure 4.2: 2-isogenies over F431.

Remark 4.7. Isogeny volcanoes can be very useful for cryptanalysis.

5 Supersingular isogeny graphs

In this Section, we will consider the second case from Theorem 2.11, that is, we have an elliptic curve E/Fq
with q = pn such that its Frobenius endomorphism π satisfies

x2 − tx+ q = 0 with t2 − 4q = 0, so t = ±pn/2.

In this case, E is necessarily supersingular (as p | t) and Theorem 2.11 gives that EndFq
(E) is a maximal

order O in the quaternion algebra Bp,∞.
There are several differences from the commutative case in Section 3:

−/+ quaternion algebras are non-commutative,

+ we can still construct isogenies from (one-sided) ideals a in O,

− even for a invertible have EndFq
(E) 6∼= EndFq

(E/E[a]),

−/+ there is no class group for quaternion algebras that would act on the set of supersingular elliptic curves
(considered up to Fq-isomorphism),

+ all supersingular elliptic curves satisfy j(E) ∈ Fp2 and so they can already be defined over Fp2 , so it is
enough to consider the case t = ±2p,

+ every supersingular j-invariant has a representative with t = −2p.

5.1 Supersingular curves and isogenies

From now on, we only need2 to consider the case of supersingular elliptic curves over Fp2 with trace t = −2p.

Fact 5.1 (Exercise:).

E(Fp2) ∼=
Z

(p+ 1)Z
× Z

(p+ 1)Z
.

Equivalently, for any m,

1. either E(Fp2)[m] = {OE},

2. or E(Fp2)[m] = Z/mZ× Z/mZ, in which case m | (p+ 1)2.

2This is explained well in Adj, Ahmadi, and Menezes https://eprint.iacr.org/2018/132
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Figure 5.1: The supersingular isogeny graph G2(F601).

Figure 5.2: The supersingular isogeny graph G3(F457).

(Hint: Show that the Frobenius acts like a scalar in EndFp2
(E) and this means that either all or only trivial

m-torsion can be defined over Fp2 .)

Definition 5.2. Let ` be a prime such that ` | p+ 1. We define the supersingular `-isogeny graph G`(Fp2):

• vertices are supersingular j-invariants in Fp2 ,

• edges are `-isogenies, up to equivalence given by identifying isomorphisms and identifying dual isogenies.

Examples of supersingular isogeny graphs are given in Figure 5.1 and 5.2.
The graph G`(Fp2) for ` | p+ 1 has the following properties3:

1. the graph G`(Fp2) has ≈ p
12 vertices,

2. the graph G`(Fp2) is connected,

3. the graph is (` + 1)-regular with the exception of possibly 2 vertices, corresponding to j-invariants 0
and 1728,

4. the graph G`(Fp2) has a short diameter: the shortest path between any two vertices has length Ω(log p),

3For proofs, consult Kohel’s thesis http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf or Charles, Goren, and Lauter https:
//eprint.iacr.org/2006/021.
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Figure 5.3: Example of a shortest path between two random vertices in G2(F15492).

5. the graph G`(Fp2) has the rapid mixing property: starting from a vertex v, endpoints of a random
walk of length > log` p are close to uniformly random vertices,

6. (conjecturally: given two arbitrary vertices in G`(Fp2), it is difficult to find a path between them.

Path finding is currently exponentially hard ( in log p), both classically and quantumly.

5.2 SIDH

Supersingular Isogeny Diffie-Hellman is a key exchange protocol from supersingular isogeny curves. We
only wish to give a flavor, so we only explain a simplification of Alice’s key generation, which relies on the
supersingular isogeny graph G`(Fp2).

From a starting curve E0/Fp2 , Alice chooses a random sequence of `-isogenies, obtaining isogeny

ϕA : E0 → EA, degϕA = `e.

Alice’s secret is the path in G`(Fp2) giving the isogeny ϕA and her public key is the curve EA.
There are many selling points for SIDH:

• fastest attacks on path finding between random vertices are exponential (both quantumly and classi-
cally),

• SIDH is easy to instantiate using 2- and 3-isogenies,

• rapid mixing of the graph gives uniformly random* public keys.

The best implementation if SIDH is SIKE [1], which is a candidate proposal in the NIST competition for
post-quantum key encapsulation mechanism (tightly related to key exchange).

Taking a second look at the claims above:

1. path finding is not hard for all vertices in G`(Fp2): it is easier to find paths if

• the curves are subfield curves, that is, j(E), j(E′) ∈ Fp [8],

• both endomorphism rings End(E) and End(E′) are known [10],

2. Alice needs to publish auxiliary data along with EA,
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• this leads to active attacks (can be remedied at a cost in performance) [9],

• this leads to attacks on unrealistic variants [13], but also on extensions to k-parties,

3. the length of Alice’s walk is too short for the rapid mixing property, so there is no guarantee of the
randomness of Alice’s curve EA,

4. the subgraph of G`(Fp2) given by possible secret paths is almost a tree [11], see Figure ??.

Yet none of this breaks SIKE!

Figure 5.4: The almost tree of SIKE: the subgraph of G`(Fp2) which is induced by the paths from the
starting curve E0 to all the possible public keys EA.

6 Conclusions

Isogeny-based cryptography is a varied field immensely attractive to number theorists both with its con-
nections to the theory of complex multiplication and to quaternion algebras. There are many unsolved
fundamental problems relying the computational assumptions on which the protocols are based.
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