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Elliptic curves and isogenies
An elliptic curve E over a finite field Fq (of characteristic > 3) is an
algebraic group given by an equation

E : y2 = x3 + ax + b, a,b ∈ Fq , 4a3 + 27b2 6= 0

Points of E : pairs P = (xP , yP) ∈ (Fq)2 satisfying the equation and the
point at infinity OE .

Rational points E(Fq) : points of E with both coordinates in Fq .

An isogeny (defined over Fq) between elliptic curves E ,E ′/Fq is a
rational map ϕ : E → E ′

(x , y) 7→ (f (x , y),g(x , y))

for some f ,g ∈ Fq(x , y) which is also a group homomorphism.

Example: multiplication by m: denoted [m] : E → E

P 7→ [m]P



What else do we need to know about isogenies
E elliptic curve over Fq . We can add isogenies, compose isogenies.
We have an endomorphism ring End(E).

Isogenies have a finite kernel:

ker([m]) = E [m] subgroup of points of order m

as abelian groups, E [m] ∼= Z/mZ× Z/mZ

From any finite subgroup H ⊂ E we can construct an isogeny

ϕ : E → E/H kerϕ = H

The degree of the isogeny ϕ is the size of the kernel:

degϕ = #ker(ϕ)

Exception: the Frobenius endomorphism

π : (x , y) 7→ (xq , yq)

has degree q but kernel ker π = {OE}.



‘Isogeny-based cryptography’

From a chosen starting curve E0/Fq , construct some secret isogeny

ϕ : E0 → E .

I E is your public key,
everyone can contact you using the public data and your public key E ,

I the isogeny ϕ is your secret key,
you are the only one who knows ϕ, nobody should be able to impersonate you
without knowing ϕ.

Main problem to break in isogeny-based cryptography
Given two elliptic curves E0,E/Fq , find an isogeny between E0 and E .

Depending on the setting: find isogeny of a specific degree, with
prescribed values (say, Q 7→ Q′), or any isogeny will do.



Elliptic curves with complex multiplication

Let E be an elliptic curve over Fq . Then

#E(Fq) = q + 1− t , |t | ≤ 2
√

q.

This t is the trace of Frobenius: the endomorphism π satisfies

π2 − tπ + q = 0 in End(E)

And since ∆π = t2 − 4q ≤ 0, then Z[π] is an order in an imaginary
quadratic field Q(

√
∆π). (ignore the case ∆π = 0)

Fact: unless ∆π = 0, (happens for some cases of supersingular elliptic curves)

Z[π] ⊂ EndFq (E) ⊂ OK ⊂ Q(
√

∆π)

From now on, we will be in this case:

EndFq (E) = O is an order in an imaginary quadratic field



From ideals to isogenies
E elliptic curve over Fq with q + 1− t points, t2 − 4q = ∆π ,
Z[π] ⊂ EndFq (E) = O ⊂ Q(

√
∆π).

For any ideal a ⊂ O we can produce a finite subgroup

E [a] = ∩α∈a kerα

Example: ideal (m, π − 1) ⊂ O
We compute E [(m, π − 1)] = ker[m] ∩ ker(π − 1).

Then ker[m] = E [m] is the subgroup of points of order dividing m.

The group ker(π − 1) = E [π − 1] is the subgroup on which π acts
like 1 (identity):

E [π − 1] = E(Fq)

So E [(m, π − 1)] = E [m] ∩ E(Fq) = E(Fq)[m] ⊂ Z/mZ× Z/mZ.



Constructing isogenies from the kernel
E elliptic curve over Fq with q + 1− t points, t2 − 4q = ∆π ,
Z[π] ⊂ EndFq (E) = O ⊂ Q(

√
∆π), and a ⊂ O (invertible) ideal of O.

Once we have the subgroup E [a], we can compute an isogeny

ϕa : E → E/E [a] kerϕa = E [a], degϕa = norm(a)

Then E/E [a] has the same endomorphism ring O and trace t .

Fact: if a and b are in the same class in Cl(O), then

E/E [a] ∼= E/E [b]

È `q(O, t) = {elliptic curves E/Fq | EndFq (E) ∼= O and tr π = t }/ ∼=Fq .

Theorem (‘Main theorem of complex multiplication’)
The mapping Cl(O)× È `(O, t)→ È `(O, t)

([a],E) 7→ [a] ? E = E/E [a]

is a free and transitive group action.



Going back to our problem

E elliptic curve over Fq with q + 1− t points, t2 − 4q = ∆π ,
Z[π] ⊂ End(E) = O ⊂ Q(

√
∆), and a ⊂ O (invertible) ideal of O.

È `q(O, t) = { elliptic curves E/Fq | EndFq (E) ∼= O and tr π = t }/ ∼=Fq .

The action of Cl(O) on È `q(O, t) is free and transitive:

I every two elliptic curves E ,E ′ ∈ È `q(O, t) are connected by a
unique ideal class [a]: E ′ = [a] ? E

Transport the structure from the group Cl(O) to the set È `q(O, t).

‘Commutative’ isogeny-based cryptography
The secret isogeny φ : E0 → E is obtained by the group action

E0 → E = [a] ? E0



Zoology of proposals

Setting: [C’06, RS’06, dFKS’18, CSIDH, CSURF]
Choose q and t and O and a starting curve E0 ∈ È `q(O, t). Secret
keys: choose a random class [a] ∈ Cl(O); public key: compute

E = [a] ? E0.

I C’06, RS’06 allow ordinary elliptic curves over Fq , any t and O.

I dFKS’18 use ordinary elliptic curves over a prime field Fp with
#E(Fp) = q + 1− t divisible by lots of small primes (for
efficiency).

I CSIDH uses supersingular elliptic curves (t = 0) over Fp with
p ≡ 3 mod 8, order O = Z[

√
−p] and #E(Fp) = p + 1 divisible

by lots of small primes.

I CSURF uses supersingular elliptic curves over Fp with
p ≡ 7 mod 8, order O = Z

[
1+
√
−p

2

]
and #E(Fp) = p + 1

divisible by lots of small primes.



How do we study isogenies?

Two elliptic curves isogenous via an (unknown) isogeny ϕ : E → E ′.

To obtain information about the degree of ϕ, we will use pairings:

The (reduced) Tate pairing (assume that µm ⊂ Fq):

Tm : E(Fq)[m]× E(Fq)/mE(Fq) // µm ⊂ Fq

(P,Q) � // Tm(P,Q)

is a non-degenerate bilinear pairing with the following compatibility
property:

Tm(ϕ(P), ϕ(Q)) = Tm(P,Q)deg(ϕ).

There can be non-trivial self-pairings Tm(P,P) 6= 1;

We need to find an image ϕ(P) for a point P ∈ E(Fq)[m] to be able to
reveal the degree degϕ (mod m).



Will this work?
Assume gcd(degϕ,m) = 1 and m odd. If we know the image ϕ(P) ∈ E ′[m] of
P ∈ E [m], we can compare the m-th roots of unity Tm(ϕ(P), ϕ(P)) = Tm(P,P)deg(ϕ)

and obtain degϕ mod m.

We do not know the secret isogeny ϕ : E → E ′.

1. By rationality, we note that

ϕ(E(Fq)[m]) ⊂ E ′(Fq)[m]

but we cannot pinpoint the exact image of a single point.

Fix 1 Look for P ∈ E and P ′ ∈ E ′ with ϕ(P) ∈ 〈P ′〉.

Can only conclude whether degϕ is a square (mod m) or not.

2. There are infinitely many such isogenies: for any representative
a of [a] there is an isogeny ϕa : E → E ′.
The degree of the isogeny ϕa is norm(a).

Fix 2 Genus theory supplies values of m such that [a] 7→
(

norm(a)
m

)
is a

quadratic character on Cl(O).



Fix 1 - why only up to squares?
Suppose P ∈ E(Fq)[m] and P ′ ∈ E ′(Fq)[m] with ϕ(P) ∈ 〈P ′〉, that is,
ϕ(P) = kP ′ for some k . Assume also Tm(P,P) 6= 1 and m odd prime.

Then we can compute

Tm(ϕ(P), ϕ(P)) = Tm(P,P)deg(ϕ)

Tm(ϕ(P), ϕ(P)) = Tm(kP ′, kP ′) = Tm(P ′,P ′)k2

And conclude
Tm(P,P)deg(ϕ) = Tm(P ′,P ′)k2

But Tm(P,P) = ζm and Tm(P ′,P ′) = ζ ′m are m-th roots of unity, so

ζ ′m = ζe
m

and so
deg(ϕ) ≡ k2 · e (mod m)

for the unknown k .



How to do Fix 1

How do we find P ∈ E(Fq)[m] and P ′ ∈ E ′(Fq)[m] with ϕ(P) ∈ 〈P ′〉?

This is the case when valm(#E(Fq)) = 1:

E(Fq)[m] ∼= Z/mZ, and E ′(Fq)[m] ∼= Z/mZ,

and we’ve already noted for any isogeny ϕ with gcd(degϕ,m) = 1:

ϕ(E(Fq)[m]) ⊂ E ′(Fq)[m] = 〈P ′〉.

The reduced Tate pairing is non-trivial (assume µm ⊂ Fq):

Tm : E(Fq)[m]× E(Fq)/mE(Fq)→ µm ⊂ Fq

and E(Fq)[m] is a set of representatives of E(Fq)/mE(Fq).

So under conditions m|q − 1 and valm(#E(Fq)) = 1 we succeed.



How to do Fix 2

Problem: There are infinitely many isogenies

ϕ : E → E ′ = [a] ? E ,

one for each representative a of the ideal class [a], the degrees of the
isogenies are the norms norm(a).

Using the m-th Tate pairing evaluated at special points, we hope to
determine whether degϕ = norm(a) is a square modm.

This answer has to be the same for all isogenies, so for all a ∈ [a].

This gives a quadratic character on Cl(O).

But we know quadratic characters on Cl(O) thanks to genus theory!



Quadratic characters of the class group
Let O be an order of discriminant ∆ in an imaginary quadratic field.
Write ∆ = −2a ·

∏r
i=1 mei

i for distinct odd primes mi .

Theorem (Genus theory)
All quadratic characters of Cl(O) are given by (products of):

I for every odd prime mi :

χm : Cl(O)→ {±1} [a] 7→
(

norm(a)

m

)
where a is any representative of [a] satisfying gcd(m, norm(a)) = 1.

I Define δ : a 7→ (−1)(norm(a)−1)/2 ε : a 7→ (−1)(norm(a)2−1)/8

if ∆ = −4n, extend the set of characters by

1. δ if n ≡ 1, 4, 5 (mod 8),
2. ε if n ≡ 6 (mod 8),
3. δε if n ≡ 2 (mod 8).

There is one relation between these characters:

χ
e1
m1
· · · · · χer

r · δ
b+1

2 mod 2 · εa mod 2 ≡ 1 on Cl(O)



Step back

E ,E ′ ∈ È `(O, t) be elliptic curves with E ′ = [a] ? E .

If we have for an odd prime m|∆:

I such that χm is non-trivial,
whenever ∆ 6= −m,−4m for a prime m ≡ 3 mod 4

I there is a pair of points P ∈ E(Fq)[m] and P ′ ∈ E ′(Fq)[m]
satisfying P 7→ kP ′,
e.g. whenever val(#E(Fq)) = 1

I and the self-pairing Tm(P,P) 6= 1 is non-trivial,
e.g. whenever val(#E(Fq)) = 1 and m|q − 1

then we can compute

χm([a]) =

(
norm(a)

m

)
just from the elliptic curves E and E ′.



Most general statement

We can compute the quadratic characters χm([a]) directly from elliptic
curves E ,E ′ = [a] ? E .

This can be used to attack the Decisional Diffie-Hellman problem for
the class group actions.

The running time depends on m: it is in O(m · polylog(p)). So when
does the attack run in polynomial time in log p?

This attack works
1. for ordinary curves [C’06, RS’06, dFKS’18]: whenever # Cl(O) is

even and there is a small odd divisor of disc(O), which is
(heuristically) a density 1 set of orders O. In praticular, it works
for all setups proposed in [DKS’18],

2. for supersingular curves: whenever p ≡ 1 mod 4. This is not the
case for CSIDH or CSURF (they use p ≡ 3 mod 4).



Thank you!
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