Isogenies of elliptic curves over finite fields and genus theory

Jana Sotáková

QuSoft / University of Amsterdam

Joint work with Wouter Castryck and Frederik Vercauteren Breaking the decisional Diffie-Hellman problem for class group actions using genus theory

https://eprint.iacr.org/2020/151

Elliptic curves and isogenies

An elliptic curve *E* over a finite field \mathbb{F}_q (of characteristic > 3) is an algebraic group given by an equation

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{F}_q, \ 4a^3 + 27b^2 \neq 0$$

Points of *E*: pairs $P = (x_P, y_P) \in (\overline{\mathbb{F}}_q)^2$ satisfying the equation and the point at infinity O_E .

Rational points $E(\mathbb{F}_q)$: points of *E* with both coordinates in \mathbb{F}_q .

An isogeny (defined over \mathbb{F}_q) between elliptic curves $E, E'/\mathbb{F}_q$ is a rational map $\varphi: E \to E'$

$$(x, y) \mapsto (f(x, y), g(x, y))$$

for some $f, g \in \mathbb{F}_q(x, y)$ which is also a group homomorphism.

Example: multiplication by *m*: denoted $[m] : E \rightarrow E$

 $P\mapsto [m]P$

What else do we need to know about isogenies

E elliptic curve over \mathbb{F}_q . We can add isogenies, compose isogenies. We have an endomorphism ring End(E).

Isogenies have a finite kernel:

ker([m]) = E[m] subgroup of points of order m

as abelian groups, $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$

From any finite subgroup $H \subset E$ we can construct an isogeny

$$\varphi: E \to E/H$$
 ker $\varphi = H$

The degree of the isogeny φ is the size of the kernel:

$$\deg \varphi = \# ker(\varphi)$$

Exception: the Frobenius endomorphism

$$\pi:(\mathbf{X},\mathbf{Y})\mapsto(\mathbf{X}^{q},\mathbf{Y}^{q})$$

has degree q but kernel ker $\pi = \{O_E\}$.

'Isogeny-based cryptography'

From a chosen starting curve E_0/\mathbb{F}_q , construct some secret isogeny

 $\varphi: E_0 \rightarrow E.$

E is your public key,

everyone can contact you using the public data and your public key E,

the isogeny φ is your secret key, you are the only one who knows φ, nobody should be able to impersonate you without knowing φ.

Main problem to break in isogeny-based cryptography Given two elliptic curves E_0 , E/\mathbb{F}_q , find an isogeny between E_0 and E.

Depending on the setting: find isogeny of a specific degree, with prescribed values (say, $Q \mapsto Q'$), or any isogeny will do.

Elliptic curves with complex multiplication

Let *E* be an elliptic curve over \mathbb{F}_q . Then

$$\#E(\mathbb{F}_q)=q+1-t, \qquad |t|\leq 2\sqrt{q}.$$

This *t* is the trace of Frobenius: the endomorphism π satisfies

$$\pi^2 - t\pi + q = 0 \qquad \text{ in } \operatorname{End}(E)$$

And since $\Delta_{\pi} = t^2 - 4q \leq 0$, then $\mathbb{Z}[\pi]$ is an order in an imaginary quadratic field $\mathbb{Q}(\sqrt{\Delta_{\pi}})$. (ignore the case $\Delta_{\pi} = 0$)

Fact: unless $\Delta_{\pi} = 0$, (happens for some cases of supersingular elliptic curves)

$$\mathbb{Z}[\pi] \subset \mathsf{End}_{\mathbb{F}_q}(E) \subset \mathcal{O}_K \subset \mathbb{Q}(\sqrt{\Delta_\pi})$$

From now on, we will be in this case:

 $\operatorname{End}_{\mathbb{F}_q}(E) = \mathcal{O}$ is an order in an imaginary quadratic field

From ideals to isogenies

E elliptic curve over \mathbb{F}_q with q + 1 - t points, $t^2 - 4q = \Delta_{\pi}$, $\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_q}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{\Delta_{\pi}}).$

For any ideal $\mathfrak{a} \subset \mathcal{O}$ we can produce a finite subgroup

 $E[\mathfrak{a}] = \cap_{\alpha \in \mathfrak{a}} \ker \alpha$

Example: ideal $(m, \pi - 1) \subset O$

We compute $E[(m, \pi - 1)] = \ker[m] \cap \ker(\pi - 1)$.

Then ker[m] = E[m] is the subgroup of points of order dividing *m*.

The group ker $(\pi - 1) = E[\pi - 1]$ is the subgroup on which π acts like 1 (identity):

$$E[\pi-1] = E(\mathbb{F}_q)$$

So $E[(m, \pi - 1)] = E[m] \cap E(\mathbb{F}_q) = E(\mathbb{F}_q)[m] \subset \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

Constructing isogenies from the kernel

E elliptic curve over \mathbb{F}_q with q + 1 - t points, $t^2 - 4q = \Delta_{\pi}$, $\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_q}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{\Delta_{\pi}})$, and $\mathfrak{a} \subset \mathcal{O}$ (invertible) ideal of \mathcal{O} .

Once we have the subgroup E[a], we can compute an isogeny

$$\varphi_{\mathfrak{a}}: E \to E/E[\mathfrak{a}] \qquad \ker \varphi_{\mathfrak{a}} = E[\mathfrak{a}], \quad \deg \varphi_{\mathfrak{a}} = \operatorname{norm}(\mathfrak{a})$$

Then $E/E[\mathfrak{a}]$ has the same endomorphism ring \mathcal{O} and trace *t*. Fact: if \mathfrak{a} and \mathfrak{b} are in the same class in $Cl(\mathcal{O})$, then

$$E/E[\mathfrak{a}] \cong E/E[\mathfrak{b}]$$

 $\mathcal{E}\!\ell\ell_q(\mathcal{O},t) = \{ \text{ elliptic curves } E/\mathbb{F}_q \mid \text{End}_{\mathbb{F}_q}(E) \cong \mathcal{O} \text{ and } \operatorname{tr} \pi = t \} / \cong_{\mathbb{F}_q} .$

Theorem ('Main theorem of complex multiplication') The mapping $Cl(\mathcal{O}) \times \mathcal{E}\ell\ell(\mathcal{O}, t) \rightarrow \mathcal{E}\ell\ell(\mathcal{O}, t)$ $([\mathfrak{a}], E) \mapsto [\mathfrak{a}] \star E = E/E[\mathfrak{a}]$

is a free and transitive group action.

Going back to our problem

E elliptic curve over \mathbb{F}_q with q + 1 - t points, $t^2 - 4q = \Delta_{\pi}$, $\mathbb{Z}[\pi] \subset \operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{\Delta})$, and $\mathfrak{a} \subset \mathcal{O}$ (invertible) ideal of \mathcal{O} . $\mathscr{Ell}_q(\mathcal{O}, t) = \{ \text{elliptic curves } E/\mathbb{F}_q \mid \operatorname{End}_{\mathbb{F}_q}(E) \cong \mathcal{O} \text{ and } \operatorname{tr} \pi = t \} / \cong_{\mathbb{F}_q} .$

The action of $Cl(\mathcal{O})$ on $\mathcal{Ell}_q(\mathcal{O}, t)$ is free and transitive:

every two elliptic curves E, E' ∈ Ell_q(O, t) are connected by a unique ideal class [a]: E' = [a] ★ E

Transport the structure from the group $Cl(\mathcal{O})$ to the set $\mathcal{E}\ell\ell_q(\mathcal{O}, t)$.

'Commutative' isogeny-based cryptography The secret isogeny $\phi : E_0 \rightarrow E$ is obtained by the group action

$$E_0 \to E = [\mathfrak{a}] \star E_0$$

Zoology of proposals

Setting: [C'06, RS'06, dFKS'18, CSIDH, CSURF]

Choose *q* and *t* and \mathcal{O} and a starting curve $E_0 \in \mathcal{E}\ell_q(\mathcal{O}, t)$. Secret keys: choose a random class $[\mathfrak{a}] \in Cl(\mathcal{O})$; public key: compute

$$E = [\mathfrak{a}] \star E_0.$$

- ▶ C'06, RS'06 allow ordinary elliptic curves over \mathbb{F}_q , any *t* and \mathcal{O} .
- ► dFKS'18 use ordinary elliptic curves over a prime field F_p with #E(F_p) = q + 1 - t divisible by lots of small primes (for efficiency).
- CSIDH uses supersingular elliptic curves (t = 0) over 𝔽_p with p ≡ 3 mod 8, order 𝒪 = ℤ[√−p] and #E(𝔽_p) = p + 1 divisible by lots of small primes.
- CSURF uses supersingular elliptic curves over 𝔽_p with p ≡ 7 mod 8, order 𝒪 = ℤ [^{1+√−p}/₂] and #𝑍(𝔽_p) = խ + 1 divisible by lots of small primes.

How do we study isogenies?

Two elliptic curves isogenous via an (unknown) isogeny $\varphi: E \to E'$.

To obtain information about the degree of φ , we will use pairings:

The (reduced) Tate pairing (assume that $\mu_m \subset \mathbb{F}_q$):

$$T_m: \qquad E(\mathbb{F}_q)[m] \times E(\mathbb{F}_q)/mE(\mathbb{F}_q) \longrightarrow \mu_m \subset \mathbb{F}_q$$
$$(P, Q) \longmapsto T_m(P, Q)$$

is a non-degenerate bilinear pairing with the following compatibility property:

$$T_m(\varphi(P),\varphi(Q)) = T_m(P,Q)^{\deg(\varphi)}.$$

There can be non-trivial self-pairings $T_m(P, P) \neq 1$;

We need to find an image $\varphi(P)$ for a point $P \in E(\mathbb{F}_q)[m]$ to be able to reveal the degree deg $\varphi \pmod{m}$.

Will this work?

Assume gcd(deg φ , *m*) = 1 and *m* odd. If we know the image $\varphi(P) \in E'[m]$ of $P \in E[m]$, we can compare the *m*-th roots of unity $T_m(\varphi(P), \varphi(P)) = T_m(P, P)^{\deg(\varphi)}$ and obtain deg φ mod *m*.

We do not know the secret isogeny $\varphi: E \to E'$.

1. By rationality, we note that

 $\varphi(E(\mathbb{F}_q)[m]) \subset E'(\mathbb{F}_q)[m]$

but we cannot pinpoint the exact image of a single point.

Fix 1 Look for $P \in E$ and $P' \in E'$ with $\varphi(P) \in \langle P' \rangle$.

Can only conclude whether deg φ is a square (mod *m*) or not.

2. There are infinitely many such isogenies: for any representative \mathfrak{a} of $[\mathfrak{a}]$ there is an isogeny $\varphi_{\mathfrak{a}} : E \to E'$. The degree of the isogeny $\varphi_{\mathfrak{a}}$ is norm(\mathfrak{a}).

Fix 2 Genus theory supplies values of *m* such that $[\mathfrak{a}] \mapsto \left(\frac{\operatorname{norm}(\mathfrak{a})}{m}\right)$ is a quadratic character on $Cl(\mathcal{O})$.

Fix 1 - why only up to squares?

Suppose $P \in E(\mathbb{F}_q)[m]$ and $P' \in E'(\mathbb{F}_q)[m]$ with $\varphi(P) \in \langle P' \rangle$, that is, $\varphi(P) = kP'$ for some *k*. Assume also $T_m(P, P) \neq 1$ and *m* odd prime.

Then we can compute

$$T_m(\varphi(P), \varphi(P)) = T_m(P, P)^{\deg(\varphi)}$$

 $T_m(\varphi(P), \varphi(P)) = T_m(kP', kP') = T_m(P', P')^{k^2}$

And conclude

$$T_m(P,P)^{\deg(\varphi)} = T_m(P',P')^{k^2}$$

But $T_m(P, P) = \zeta_m$ and $T_m(P', P') = \zeta'_m$ are *m*-th roots of unity, so

$$\zeta'_m = \zeta^e_m$$

and so

$$\deg(\varphi) \equiv k^2 \cdot e \pmod{m}$$

for the unknown k.

How to do Fix 1

How do we find $P \in E(\mathbb{F}_q)[m]$ and $P' \in E'(\mathbb{F}_q)[m]$ with $\varphi(P) \in \langle P' \rangle$?

This is the case when $\operatorname{val}_m(\#E(\mathbb{F}_q)) = 1$:

 $E(\mathbb{F}_q)[m] \cong \mathbb{Z}/m\mathbb{Z},$ and $E'(\mathbb{F}_q)[m] \cong \mathbb{Z}/m\mathbb{Z},$

and we've already noted for any isogeny φ with $gcd(\deg \varphi, m) = 1$:

$$\varphi(E(\mathbb{F}_q)[m]) \subset E'(\mathbb{F}_q)[m] = \langle P' \rangle.$$

The reduced Tate pairing is non-trivial (assume $\mu_m \subset \mathbb{F}_q$):

$$T_m: E(\mathbb{F}_q)[m] \times E(\mathbb{F}_q)/mE(\mathbb{F}_q) \to \mu_m \subset \mathbb{F}_q$$

and $E(\mathbb{F}_q)[m]$ is a set of representatives of $E(\mathbb{F}_q)/mE(\mathbb{F}_q)$.

So under conditions m|q-1 and $val_m(\#E(\mathbb{F}_q)) = 1$ we succeed.

How to do Fix 2

Problem: There are infinitely many isogenies

```
\varphi: E \to E' = [\mathfrak{a}] \star E,
```

one for each representative \mathfrak{a} of the ideal class $[\mathfrak{a}]$, the degrees of the isogenies are the norms norm (\mathfrak{a}) .

Using the *m*-th Tate pairing evaluated at special points, we hope to determine whether deg $\varphi = \operatorname{norm}(\mathfrak{a})$ is a square mod *m*.

This answer has to be the same for all isogenies, so for all $\mathfrak{a} \in [\mathfrak{a}]$.

This gives a quadratic character on $CI(\mathcal{O})$.

But we know quadratic characters on $Cl(\mathcal{O})$ thanks to genus theory!

Quadratic characters of the class group

Let \mathcal{O} be an order of discriminant Δ in an imaginary quadratic field. Write $\Delta = -2^a \cdot \prod_{i=1}^r m_i^{e_i}$ for distinct odd primes m_i .

Theorem (Genus theory)

All quadratic characters of $CI(\mathcal{O})$ are given by (products of):

for every odd prime m_i:

$$\chi_m: \mathsf{Cl}(\mathcal{O}) \to \{\pm 1\} \qquad [\mathfrak{a}] \mapsto \left(\frac{\mathsf{norm}(\mathfrak{a})}{m}\right)$$

where a is any representative of [a] satisfying gcd(m, norm(a)) = 1.

• Define $\delta: \mathfrak{a} \mapsto (-1)^{(\operatorname{norm}(\mathfrak{a})-1)/2} \quad \varepsilon: \mathfrak{a} \mapsto (-1)^{(\operatorname{norm}(\mathfrak{a})^2-1)/8}$

if $\Delta = -4n$, extend the set of characters by

1.
$$\delta$$
 if $n \equiv 1, 4, 5 \pmod{8}$,

- **2.** ε if $n \equiv 6 \pmod{8}$,
- 3. $\delta \varepsilon$ if $n \equiv 2 \pmod{8}$.

There is one relation between these characters:

$$\chi_{m_1}^{e_1} \cdot \dots \cdot \chi_r^{e_r} \cdot \delta^{\frac{b+1}{2} \mod 2} \cdot \varepsilon^{a \mod 2} \equiv 1$$
 on $Cl(\mathcal{O})$

Step back

 $E, E' \in \mathcal{E}\ell\ell(\mathcal{O}, t)$ be elliptic curves with $E' = [\mathfrak{a}] \star E$.

If we have for an odd prime $m|\Delta$:

• such that χ_m is non-trivial,

whenever $\Delta \neq -m, -4m$ for a prime $m \equiv 3 \mod 4$

- there is a pair of points P ∈ E(𝔽_q)[m] and P' ∈ E'(𝔽_q)[m] satisfying P ↦ kP', e.g. whenever val(#E(𝔽_q)) = 1
- And the self-pairing T_m(P, P) ≠ 1 is non-trivial, e.g. whenever val(#E(𝔽_q)) = 1 and m|q − 1

then we can compute

$$\chi_m([\mathfrak{a}]) = \left(\frac{\operatorname{norm}(\mathfrak{a})}{m}\right)$$

just from the elliptic curves E and E'.

Most general statement

We can compute the quadratic characters $\chi_m([\mathfrak{a}])$ directly from elliptic curves $E, E' = [\mathfrak{a}] \star E$.

This can be used to attack the Decisional Diffie-Hellman problem for the class group actions.

The running time depends on *m*: it is in $O(m \cdot \text{polylog}(p))$. So when does the attack run in polynomial time in $\log p$?

This attack works

- for ordinary curves [C'06, RS'06, dFKS'18]: whenever # CI(O) is even and there is a small odd divisor of disc(O), which is (heuristically) a density 1 set of orders O. In praticular, it works for all setups proposed in [DKS'18],
- 2. for supersingular curves: whenever $p \equiv 1 \mod 4$. This is not the case for CSIDH or CSURF (they use $p \equiv 3 \mod 4$).

Thank you!

Breaking the decisional Diffie-Hellman problem for class group actions using genus theory

Wouter Castryck and Jana Sotáková and Frederik Vercauteren

https://eprint.iacr.org/2020/151