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Elliptic curves and isogenies

An elliptic curve E over a finite field IF, (of characteristic > 3) is an
algebraic group given by an equation

E:y?=x¥+ax+b, abelFgy, 48 +270%#0

Points of E: pairs P = (xp, yp) € (F4)? satisfying the equation and the
point at infinity Ok.

Rational points E(Fy) : points of E with both coordinates in Fy.

An isogeny (defined over F,) between elliptic curves E, E'/Fq is a
rational map ¢ : E — E’

(x,y) = (f(x,¥),9(x,y))
for some f, g € Fy(x, y) which is also a group homomorphism.
Example: multiplication by m: denoted [m] : E — E

P — [m]P



What else do we need to know about isogenies

E elliptic curve over F;. We can add isogenies, compose isogenies.
We have an endomorphism ring End(E).

Isogenies have a finite kernel:
ker([m]) = E[m] subgroup of points of order m

as abelian groups, E[m] &~ Z/mZ x 7./ mZ

From any finite subgroup H C E we can construct an isogeny

p:E—E/H kero = H

The degree of the isogeny ¢ is the size of the kernel:
deg o = #ker(p)
Exception: the Frobenius endomorphism
T (X, y) = (x9,y9)

has degree q but kernel ker 7 = {Og}.



‘Isogeny-based cryptography’

From a chosen starting curve Eq/Fy, construct some secret isogeny

p: Ey— E.

» E is your public key,

everyone can contact you using the public data and your public key E,

> the isogeny ¢ is your secret key,
you are the only one who knows ¢, nobody should be able to impersonate you

without knowing .

Main problem to break in isogeny-based cryptography
Given two elliptic curves Eg, E /Fg, find an isogeny between Ey and E.

Depending on the setting: find isogeny of a specific degree, with
prescribed values (say, Q — Q’), or any isogeny will do.



Elliptic curves with complex multiplication

Let E be an elliptic curve over 4. Then
#E(Fq) =q+1-1, t] <2q.
This t is the trace of Frobenius: the endomorphism 7 satisfies
™ —tn+q=0 in End(E)

And since A, = 2 — 4q < 0, then Z[r] is an order in an imaginary
quadratic field Q(v/A). (ignore the case A, = 0)

Fact: unless A, = 0, (happens for some cases of supersingular elliptic curves)

Z[r] C Endg,(E) C Ok C Q(\/Ax)
From now on, we will be in this case:

Endr,(E) = O is an order in an imaginary quadratic field



From ideals to isogenies

E elliptic curve over Fq with g + 1 — ¢ points, 2 —4q= A,
Z[r] C Endg,(E) = O C Q(VAx).

For any ideal a ¢ O we can produce a finite subgroup

Ela] = Naca kera

Example: ideal (m,7 —1) C O

We compute E[(m, 7 — 1)] = ker[m] N ker(m — 1).

Then ker[m] = E[m] is the subgroup of points of order dividing m.
The group ker(m — 1) = E[x — 1] is the subgroup on which = acts

like 1 (identity):
E[r —1] = E(Fq)

So E[(m,m —1)] = E[m|N E(Fq) = E(Fg)[m] C Z/mZ x Z/mZ.



Constructing isogenies from the kernel

E elliptic curve over Fq with g + 1 — t points, 12 — 49 = A,
Z[r] C Endp,(E) = O C Q(vVAx), and a C O (invertible) ideal of O.

Once we have the subgroup E[a], we can compute an isogeny
a1 E— E/E[q] ker pq = Ela], degyq, = norm(a)

Then E/E[a] has the same endomorphism ring O and trace t.

Fact: if a and b are in the same class in CI(O), then
E/E[a] = E/E[b]
&lq(O, t) = { elliptic curves E/Fq| Endp, (E) = O andtrm =t}/ =, .

Theorem (‘Main theorem of complex multiplication’)
The mapping  CI(O) x &U(O,t) — EU(O, 1)
(la], E) = [a] x E = E/E[d]

is a free and transitive group action.



Going back to our problem

E elliptic curve over Fq with g + 1 — t points, 2 —4q= A,

Z[r] C End(E) = O C Q(v/A), and a C O (invertible) ideal of O.
&lq(O, t) = { elliptic curves E/Fq| Endp,(E) = Oandtrm =t}/ =, .
The action of CI(O) on &U4(O, t) is free and transitive:

> every two elliptic curves E, E’ € &lq(O, t) are connected by a
unique ideal class [a]: E'=[alxE

Transport the structure from the group CI(O) to the set &/4(O, t).

‘Commutative’ isogeny-based cryptography
The secret isogeny ¢ : Eg — E is obtained by the group action

E0—>E:[a]*E0



Zoology of proposals

Setting: [C’06, RS’06, dFKS’18, CSIDH, CSURF]
Choose g and t and O and a starting curve Ey € &q(O, t). Secret
keys: choose a random class [a] € CI(O); public key: compute

E= [Cl]*Eo.

» C’06, RS’06 allow ordinary elliptic curves over g, any t and O.

» dFKS’18 use ordinary elliptic curves over a prime field F, with
#E(Fp) = g+ 1 — t divisible by lots of small primes (for
efficiency).

» CSIDH uses supersingular elliptic curves (t = 0) over F, with
p =3 mod 8, order O = Z[,/—p] and #E(Fp) = p + 1 divisible
by lots of small primes.

» CSURF uses supersingular elliptic curves over F, with
p=7 mod 8, order O =Z {%] and #E(Fp) =p+1
divisible by lots of small primes.



How do we study isogenies?

Two elliptic curves isogenous via an (unknown) isogeny ¢ : E — E’.
To obtain information about the degree of ¢, we will use pairings:
The (reduced) Tate pairing (assume that um C Fg):
Tn:  E(Fq)[m] x E(Fq)/mE(Fg) — jim C Fq
(P,Q)— Tp(P,Q)
is a non-degenerate bilinear pairing with the following compatibility

property:
Ton((P), 9(Q)) = Tm(P, Q)19

There can be non-trivial self-pairings T (P, P) # 1;

We need to find an image ¢(P) for a point P € E(F4)[m] to be able to
reveal the degree deg ¢ (mod m).



Will this work?

Assume gcd(deg ¢, m) = 1 and m odd. If we know the image ¢ (P) € E’[m] of
P € E[m], we can compare the m-th roots of unity Tm(x(P), (P)) = Tm(P, P)des(#)
and obtain deg ¢ mod m.

We do not know the secret isogeny ¢ : E — E’.

1. By rationality, we note that
P(E(Fq)[m]) C E'(Fq)[m]
but we cannot pinpoint the exact image of a single point.
Fix 1 Look for P € E and P’ € E" with p(P) € (P').
Can only conclude whether deg ¢ is a square (mod m) or not.

2. There are infinitely many such isogenies: for any representative
a of [a] there is an isogeny ¢, : E — E’.
The degree of the isogeny ¢, is norm(a).

Fix 2 Genus theory supplies values of m such that [a] — (mm(“)) is a
quadratic character on CI(O).



Fix 1 - why only up to squares?

Suppose P € E(IFq)[m] and P" € E'(Fq)[m] with ¢(P) € (P’), that is,
»(P) = kP’ for some k. Assume also Tp,(P, P) # 1 and m odd prime.

Then we can compute
Tn((P), 9(P)) = Tin(P, P) (%)

T(o(P), o(P)) = Ton(kP', kP') = T(P', P')¥*

And conclude ,
Tm(P, P)%(®) = T (P, P')k

But T(P, P) = {mand Tn(P', P') = (}, are m-th roots of unity, so

Cm=Cm

and so
deg(¢) = k%-e (mod m)

for the unknown k.



How to do Fix 1

How do we find P € E(IFq)[m] and P" € E'(Fq)[m] with o(P) € (P")?
This is the case when val,(#E(Fq)) = 1:

E(Fq)[m] = Z/mZ, and E'(Fq)[m] = Z/mZ,
and we’ve already noted for any isogeny ¢ with gcd(deg ¢, m) = 1:

p(E(Fq)[m]) C E'(Fq)[m] = ().

The reduced Tate pairing is non-trivial (assume pm C Fy):
T : E(q)[m] x E(Fq)/mE(Fq) = im C Fy
and E(Fg4)[m] is a set of representatives of E(Fq)/mE(Fg).

So under conditions m|q — 1 and val,(#E(Fg)) = 1 we succeed.



How to do Fix 2

Problem: There are infinitely many isogenies
p:E— E' =Ja]xE,

one for each representative a of the ideal class [a], the degrees of the
isogenies are the norms norm(a).

Using the m-th Tate pairing evaluated at special points, we hope to
determine whether deg ¢ = norm(a) is a square modm.

This answer has to be the same for all isogenies, so for all a € [q].
This gives a quadratic character on CI(O).

But we know quadratic characters on CI(O) thanks to genus theory!



Quadratic characters of the class group

Let O be an order of discriminant A in an imaginary quadratic field.
Write A = —22 - T]I_, m,.e" for distinct odd primes m;.

Theorem (Genus theory)
All quadratic characters of CI(O) are given by (products of):
> for every odd prime m;:

Xm: CI(O) = {£1}  [a] = (Lr“;(“))

where a is any representative of [a] satisfying gcd(m, norm(a)) = 1.

» Define 5 ars (_1)(norm(u)—1)/2 e ars (_1)(norm(a)2—1)/8
if A = —4n, extend the set of characters by

1. §ifn=1,4,5 (mod 8),
2. c¢ifn=6 (mod 8),
3. seifn=2 (mod 8).
There is one relation between these characters:

b1
XE e X675 med2.amed2 — 4 o C(0)



Step back
E,E' € &u(O,t) be elliptic curves with E' = [a] x E.

If we have for an odd prime m|A:
» such that y, is non-trivial,
whenever A # —m, —4m for a prime m = 3 mod 4

> there is a pair of points P € E(Fq)[m] and P’ € E'(Fq)[m]
satisfying P — kP’,
e.g. whenever val(#E(Fq)) = 1

» and the self-pairing Tr(P, P) # 1 is non-trivial,
e.g. whenever val(#E(Fq)) = 1 and mjqg — 1

then we can compute

xm(la]) = (;‘7(“)>

just from the elliptic curves E and E’'.



Most general statement

We can compute the quadratic characters xm»([a]) directly from elliptic
curves E, E' = [a] x E.

This can be used to attack the Decisional Diffie-Hellman problem for
the class group actions.

The running time depends on m: it is in O(m - polylog(p)). So when
does the attack run in polynomial time in log p?

This attack works

1. for ordinary curves [C’06, RS’06, dFKS’18]: whenever # CI(O) is
even and there is a small odd divisor of disc(O), which is
(heuristically) a density 1 set of orders O. In praticular, it works
for all setups proposed in [DKS’18],

2. for supersingular curves: whenever p = 1 mod 4. This is not the
case for CSIDH or CSURF (they use p = 3 mod 4).



Thank you!
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