Disorientation attackson CSIDH

Gustavo Banegas!, Juliane Kramer?, Tanja Lange3, Michael Meyer?, Lorenz Panny?, Krijn Reijnders®, Jana Sotédkova®, Monika Trimoska?®

Inria and Laboratoire d’Informatique de I’Ecole polytechnique!, University of Regensburg?

Eindhoven University of Technology?, Academia Sinica

4

Radboud University®, University of Amsterdam /QuSoft®,

j.s.sotakova@uva.nl

CSIDH group action

CSIDH group action [2|: Fix a prime p =4-/¢;...¢, —1 with ¢; odd primes. Get a regular action of cl(Z[,/—p]) on
& = {E/F, supersingular and in Montgomery form y? = x> + Ax* 4+ x}. Write

(a, E) — a* E.

Easy to act with ideals [; = (¢;,/—p — 1), for efficiency work with a = [, [{* for (e1,...,e,) € K C Z™ for some

explicit choice of keyspace K.

1=1 "1

Note: in CSIDH-like cryptosystems, secrets are which isogenies we compute, and how many times we do so.

Computing one /-isogeny
Find a point of order ¢ in E(F,2) :
e toact by a=1I:find P = (x,y) with x,y € F,,

e to act by a = [T} find P = (z,y) with z € F,
and y € F2 \ Fp,

and compute the isogeny £ — E/(P) =: ax E.
We usually compute with x-coordinates only.

Computing group action

Sampling points of order ¢ is expensive; for efficiency, we
always evaluate multiple isogeny steps (with the same
orientation).

Call one iteration of the while loop a round.

Algorithm 1: Evaluation of CSIDH group action

Input: A € F, and a list of integers (e1,...,ey).
Output: B € [, such that [] [;]* * E4 = Ep
1: while some ¢e; # 0 do
Sample a random x € I, defining a point P.
Set s < IsSquare(z® + Ax? +).
Let S = {i | e; # 0, sign(e;) = s}. Restart
with new «x if S is empty.
Let k < [],c¢ ¥ and compute @ « [p—;rl]P.
for each 7 € S do
Compute R + [%]Q. If R = oo, skip this 1.
Compute ¢ : E4 — Ep with kernel (R).
Set A « B and k < k/l; and Q < ¢(Q)

and e; + e; — s.
10: return A.

(Fine print: specific implementations impose their own
conditions on the set of indices in S, but always choose
steps with the same orientation.)

Toy example

Orientation
Point P = (z,y) € E(F,2) with « € [, is oriented
e positively if 23 + Az? + x is a square in Fp,
e negatively if x> + Az? + z is a non-square in F,,.

Denote the orientation of the point by s.
Note: positively-oriented points will allow steps in pos-
itive direction I, negatively in negative directions [~1.

General disorientation

What if we disorient the point P used in Algorithm 17
Assume that we disoriented in round r. If P had full
order and orientation s, then

E™* =]]1* *Es.
1€S
If P did not have full order, we obtain a different curve

T @ x5

Eﬁ(ord(P)

E, =

Suppose we keep disorienting points at exactly the same
point in the evaluation of Algorithm 1.

Observations:

1. 4; | ord(P) is more likely than ¢; { ord(P) and so
the curve £™° will be the most common one;

2. all other curves E; are connected to E™° by a
short isogeny walk:

(a) this walk only includes degres ¢; for ¢ € S,

(b) direction of these walks reveals the orienta-
tion of P (and hence all ¢; for i € 5).

(Fine print: more ‘torsion behavior’ is possible.)

We will illustrate the general algorithm to recover secret keys on a very toy example with 10 different primes /¢;
and —1 < e; < 2. For simplicity, assume e; # 0, and let us examine what happens for the secret key (e;) :

G |31 5 | 7|11]13] 17 |19|23| 29 |31
e, |[1|-1]1[2]2]-1[1]1]-1]2

Assume we fault in round 1 and 2 of Algorithm 1 re-
peatedly, generating faulty curves E;. We also know the
correct public key Ep =[] [" x E.

1. From the faulty curves from round 1, pick the two
most common ones, say E>% and E*® (we do not
know the orientation yet). From the curves faulted
in round 2, pick the most common curve not yet
seen - this is most likely £,

. Perform a small neighbourhood walk around the
three curves and see if we see any of the faulty
curves. We obtain three disjoint trees with the
three curves as roots:

Note that the edges with labels ¢; actually corre-

MuSoft

Research Center for Guantum Software

Quantum
Software
Consortium

2

spond to two steps in the isogeny graph.

. This allows us to determine the orientation of the
curves, and signs of e; for some of the primes /¢;:

e 3.7,11 point away from the root: positive;

e 5,17 point towards the root: negative.

. Finally, we run pubcrawl to find the paths con-
necting the positive and negative curves: ELT —
E*t — Ep and Ep — EY'~. Note that no nega-
tively oriented prime will ever occur in a positive
path, and vice versa, which significantly speeds up
the search.

17
~
.— 5 >.‘29
o
\GD‘- 5 ‘_ n _@4 B

5. Read off the secret key from the labels of the path!

X

X

X

UNIVERSITEIT VAN AMSTERDAM

EINDHOVEN
R e UNIVERSITY OF
TECHNOLOGY

Universitat Regensburg

https://jana-sotakova.github.io/

Examples

CSIDH-512 2] uses 74 primes 3,5, ...,373,587, and the
keyspace K = [—5,...,5]7, so each |e;| < 5.

Fault-injection attacks

Think of a device computing with secret data. Now

consider the following magic power:
¢ force a mistake at one point in the computation.

For instance, you can replace a value by a random value,
or even skip an instruction (line) in the algorithm.

Disorientation

What if we want to compute [xFE and generate a point P
with the wrong orientation?

e What we wanted: Ep =[x F,
e What we obtained: E%Z =1 x E.

These two curves are related: Eg = I x Efg.

How to force disorientations?

In Algorithm 1, we attack Step 3: IsSquare check
1

is usually implemented as exponentiation z — 2z .
Forcing a fault anywhere in this computation replaces
the orientation of the point P with a random orienta-
tion, which is different from the orientation of P about
half of the time. Another way to sample points is the
Elligator 2 map, which can be attacked similarly.

Curves 1n different rounds

Notice that Algorithm 1 is randomized: we will gener-
ate different points and orientations every time. More-
over, the computation in round r depends on what was
computed in rounds 1,...,r — 1.

Faulty curves from different rounds are again related by
paths that reveal information on the secret key.

pubcrawl

Our main subroutine is finding a path in the isogeny
graph between either the public key curve and a faulty
curve, or between two faulty curves.

For this, we developed an optimized meet-in-the-middle
brute-force search tool called pubcrawl. To find a path
between E7 to Es:

e specify primes ¢; to use as isogeny steps,
e specify orientation from Fq to Es,

and let pubcrawl do the work!

Results [1]

We define a new class of fault attacks on CSIDH-like
schemes we call disorientation attacks;

We show that almost all current implementations
are susceptible. In particular, batching techniques

like SIMBA or CTIDH seem easier to attack be-
cause fewer isogenies are computed at each step;

We argue these attacks are inherent to the way we
compute group actions via isogenies, and so every
cryptographic implementation needs to be strength-
ened. We propose lightweight countermeasures.

We develop a tool pubcrawl for finding isogeny
paths between (faulty) curves, optimized for the
Meet-in-the-middle approach and for specifying the
set of degrees among which we want to search;

We consider a cryptographically more realistic sce-
nario of not obtaining faulty curves E; directly but
only a derived value: think only seeing a hash h(E}).

References

|1] G. Banegas, J. Kramer, T. Lange, M. Meyer, L.
Panny, K. Reijnders, J. Sotakova, and M. Tri-
moska. “Disorientation attacks on CSIDH”. In:
eprint soon!, 2022.

2] W. Castryck, T. Lange, C. Martindale, L. Panny,
and J. Renes. “CSIDH: An Efficient Post-Quantum
Commutative Group Action”. In: ASIACRYPT
2018. Vol. 11274. LNCS. Springer, 2018, pp. 395—
427.

