
DisorientationattacksonCSIDH
Gustavo Banegas1, Juliane Krämer2, Tanja Lange3, Michael Meyer2, Lorenz Panny4, Krijn Reijnders5, Jana Sotáková6, Monika Trimoska5

Inria and Laboratoire d’Informatique de l’Ecole polytechnique1, University of Regensburg2
Eindhoven University of Technology3, Academia Sinica4

Radboud University5, University of Amsterdam/QuSoft6,
j.s.sotakova@uva.nl https://jana-sotakova.github.io/

CSIDH group action
CSIDH group action [2]: Fix a prime p = 4 · ℓ1 . . . ℓn− 1 with ℓi odd primes. Get a regular action of cl(Z[

√
−p]) on

E = {E/Fp supersingular and in Montgomery form y2 = x3 +Ax2 + x}. Write

(a, E) 7→ a ⋆ E.

Easy to act with ideals li = (ℓi,
√
−p− 1), for efficiency work with a =

∏n
i=1 l

ei
i for (e1, . . . , en) ∈ K ⊂ Zn for some

explicit choice of keyspace K.
Note: in CSIDH-like cryptosystems, secrets are which isogenies we compute, and how many times we do so.

Examples
CSIDH-512 [2] uses 74 primes 3, 5, . . . , 373, 587, and the
keyspace K = [−5, . . . , 5]74, so each |ei| ≤ 5.

Orientation
Point P = (x, y) ∈ E(Fp2) with x ∈ Fp is oriented

• positively if x3 +Ax2 + x is a square in Fp,

• negatively if x3 +Ax2 + x is a non-square in Fp.

Denote the orientation of the point by s.
Note: positively-oriented points will allow steps in pos-
itive direction l, negatively in negative directions l−1.

Computing one ℓ-isogeny
Find a point of order ℓ in E(Fp2) :

• to act by a = l : find P = (x, y) with x, y ∈ Fp,

• to act by a = l−1: find P = (x, y) with x ∈ Fp

and y ∈ Fp2 \ Fp,

and compute the isogeny E → E/⟨P ⟩ =: a ⋆ E.
We usually compute with x-coordinates only.

Fault-injection attacks
Think of a device computing with secret data. Now
consider the following magic power:

E force a mistake at one point in the computation.

For instance, you can replace a value by a random value,
or even skip an instruction (line) in the algorithm.

Disorientation
What if we want to compute l⋆E and generate a point P
with the wrong orientation?

• What we wanted: EB = l ⋆ E,

• What we obtained: EE
B = l−1 ⋆ E.

These two curves are related: EB = l2 ⋆ EE
B .

How to force disorientations?
In Algorithm 1, we attack Step 3: IsSquare check
is usually implemented as exponentiation z 7→ z

p−1
2 .

Forcing a fault anywhere in this computation replaces
the orientation of the point P with a random orienta-
tion, which is different from the orientation of P about
half of the time. Another way to sample points is the
Elligator 2 map, which can be attacked similarly.

Computing group action
Sampling points of order ℓ is expensive; for efficiency, we
always evaluate multiple isogeny steps (with the same
orientation).

Call one iteration of the while loop a round.

Algorithm 1: Evaluation of CSIDH group action

Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]

ei ∗ EA = EB

1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set s← IsSquare(x3 +Ax2 + x).
4: Let S = {i | ei ̸= 0, sign(ei) = s}. Restart

with new x if S is empty.
5: Let k ←

∏
i∈S ℓi and compute Q← [p+1

k]P .
6: for each i ∈ S do
7: Compute R← [kℓi]Q. If R =∞, skip this i.
8: Compute ϕ : EA → EB with kernel ⟨R⟩.
9: Set A ← B and k ← k/ℓi and Q ← ϕ(Q)

and ei ← ei − s.
10: return A.

(Fine print: specific implementations impose their own
conditions on the set of indices in S, but always choose
steps with the same orientation.)

General disorientation
What if we disorient the point P used in Algorithm 1?
Assume that we disoriented in round r. If P had full
order and orientation s, then

Er,s =
∏
i∈S

l−2s
i ⋆ EB .

If P did not have full order, we obtain a different curve

Et =
∏

ℓi∤ ord(P)

l2si ⋆ Er,s.

Suppose we keep disorienting points at exactly the same
point in the evaluation of Algorithm 1.
Observations:

1. ℓi | ord(P) is more likely than ℓi ∤ ord(P) and so
the curve Er,s will be the most common one;

2. all other curves Et are connected to Er,s by a
short isogeny walk:

(a) this walk only includes degres ℓi for i ∈ S,

(b) direction of these walks reveals the orienta-
tion of P (and hence all ℓi for i ∈ S).

(Fine print: more ‘torsion behavior’ is possible.)

Curves in different rounds
Notice that Algorithm 1 is randomized: we will gener-
ate different points and orientations every time. More-
over, the computation in round r depends on what was
computed in rounds 1, . . . , r − 1.
Faulty curves from different rounds are again related by
paths that reveal information on the secret key.

pubcrawl
Our main subroutine is finding a path in the isogeny
graph between either the public key curve and a faulty
curve, or between two faulty curves.
For this, we developed an optimized meet-in-the-middle
brute-force search tool called pubcrawl. To find a path
between E1 to E2:

• specify primes ℓi to use as isogeny steps,

• specify orientation from E1 to E2,

and let pubcrawl do the work!

Toy example
We will illustrate the general algorithm to recover secret keys on a very toy example with 10 different primes ℓi
and −1 ≤ ei ≤ 2. For simplicity, assume ei ̸= 0, and let us examine what happens for the secret key (ei) :
ℓi 3 5 7 11 13 17 19 23 29 31
ei 1 −1 1 2 2 −1 1 1 −1 2

Assume we fault in round 1 and 2 of Algorithm 1 re-
peatedly, generating faulty curves Et. We also know the
correct public key EB =

∏
leii ⋆ E.

1. From the faulty curves from round 1, pick the two
most common ones, say E1,a and E1,b (we do not
know the orientation yet). From the curves faulted
in round 2, pick the most common curve not yet
seen - this is most likely E2,+.

2. Perform a small neighbourhood walk around the
three curves and see if we see any of the faulty
curves. We obtain three disjoint trees with the
three curves as roots:

Note that the edges with labels ℓi actually corre-

spond to two steps in the isogeny graph.

3. This allows us to determine the orientation of the
curves, and signs of ei for some of the primes ℓi:

• 3, 7, 11 point away from the root: positive;

• 5, 17 point towards the root: negative.

4. Finally, we run pubcrawl to find the paths con-
necting the positive and negative curves: E1,+ →
E2,+ → EB and EB → E1,−. Note that no nega-
tively oriented prime will ever occur in a positive
path, and vice versa, which significantly speeds up
the search.

5. Read off the secret key from the labels of the path!

Results [1]
• We define a new class of fault attacks on CSIDH-like

schemes we call disorientation attacks;

• We show that almost all current implementations
are susceptible. In particular, batching techniques
like SIMBA or CTIDH seem easier to attack be-
cause fewer isogenies are computed at each step;

• We argue these attacks are inherent to the way we
compute group actions via isogenies, and so every
cryptographic implementation needs to be strength-
ened. We propose lightweight countermeasures.

• We develop a tool pubcrawl for finding isogeny
paths between (faulty) curves, optimized for the
Meet-in-the-middle approach and for specifying the
set of degrees among which we want to search;

• We consider a cryptographically more realistic sce-
nario of not obtaining faulty curves Et directly but
only a derived value: think only seeing a hash h(Et).

References
[1] G. Banegas, J. Krämer, T. Lange, M. Meyer, L.

Panny, K. Reijnders, J. Sotáková, and M. Tri-
moska. “Disorientation attacks on CSIDH”. In:
eprint soon!, 2022.

[2] W. Castryck, T. Lange, C. Martindale, L. Panny,
and J. Renes. “CSIDH: An Efficient Post-Quantum
Commutative Group Action”. In: ASIACRYPT
2018. Vol. 11274. LNCS. Springer, 2018, pp. 395–
427.

