
PCMI Supersingular Isogeny Graphs Exercise Sheet 2

Exercises Lecture 2 & 3: Expander graphs, SIDH
Quaternion algebras, Endomorphism rings

TA: Jana Sotáková version July 26, 2022

You can find hints and more explanation starting at a new page after the exercises.
Please note that we can use the Zulip stream on Drew’s server to ask questions!
Jana will try to keep the Whova and PCMI websites up to date but quickest updates are here.

1. For small primes p ≡ 1 mod 12, denote the SIG 2-isogeny graph as G2.

Note: the congruence condition means that j = 0, 1728 are not supersingular j-invariants, so we
can make the isogeny graph undirected at all vertices.

(a) Find the adjacency matrix A of G2;
(b) Find the largest 2 eigenvalues of A;

(c) Compute the spectral gap. Estimate the expansion/Cheegner constant c using the formula
from the lecture. Compute it exactly and compare the two values.

(d) Find the diameter of the graph.

(e) What changes for p 6= 1 mod 12?

2. (Quaternion algebras and orders) For small primes p, define the quaternion algebra B := Bp,∞ =
Q〈1, i, j, k〉 with i2 = −r and j2 = −p and ij = −ji = k:

(a) Use QuaternionAlgebra< RationalField() | -r, -p >;

(b) For p ≡ 3 mod 4, use −r = −1;

(c) For p ≡ 5 mod 8, use −r = −2;

(d) Otherwise, find r as a prime r ≡ 3 mod 4 such that
(
r
p

)
= −1.

Verify that B is only ramified at p and infinity (RamifiedPrimes). Find the discriminant of B.
Note that again, ramified primes are those that divide the discriminant. In the last exercise 6, you
will see one way which makes ramified primes special.

Verify that i2 = −r and j2 = −p. Find the norm, trace and the minimal polynomial of the element
w = 2 + i− 3j + 4k.

Maximal orders. Write down a maximal order in each of the quaternion algebras. You can find
examples for different congruence conditions on p in Lemmas 2-4 in Kohel-Lauter-Petit-Tignol.

(a) Using the Magma command MaximalOrder;

(b) Using a basis and QuaternionOrder;

Find the discriminant and the norm form of the maximal order. (Check the hint on how to get
the correct norm form in Magma)

3. For p = 67, take any maximal order O ⊂ Bp,∞. Then:

(a) Enumerate all the left-ideal classes in O; LeftIdealClasses
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(b) For every ideal class, pick a representative and find the right order of the ideal; RightOrder;

(c) Check how many isomorphism classes there are as right orders. Deduce the number of
supersingular j-invariants in Fp and pairs of conjugate j-invariants in F2

p. Hint available.

(d) Compute the norm of all these ideals;

(e) Figure out which of these maximal orders correspond to elliptic curves defined over Fp. Show
that the following suffices:

i. Compute the norm form of these maximal orders; Hint available.

ii. Find out whether they represent p;

Check the count by looking at how many supersingular j-invariants there are in Fp.

4. (SIDH key exchange)

(a) (Sanity check) Suppose both Alice and Bob choose points SA, SB from the same torsion group
E[2n]. Find the curve EAB := E/〈SA, SB〉 (with high probability).

(b) We will go through the SIDH key exchange:

i. For p = 431, we have p+ 1 = 432 = 24 · 33. Let E : y2 = x3 + x/F2
p.

ii. Verify that E/Fp2 has (p + 1)2 points. Supersingular elliptic curves have very special
group structure, which implies that E[24], E[33] ⊂ E(Fq) (see Theorem 3.7 of Schoof or,
in more generality, Theorem 1.b) of Lenstra).

iii. Set up the parameters: find a basis PA, QA ⊂ E[24] and a basis PB, QB ⊂ E[33].

iv. Pick a secret point SA := mAPA+nAQA for Alice; pick a secret point SB := mBPB+nBQB

for Bob. (Set mA = mB = 1, we do this in practice and it’s easier.)

v. Compute the 16-isogeny ϕA : E → EA := E/〈RA〉 and the images of PB, QB under ϕA.
In practice, such isogenies are computed as chains of 2-isogenies, which is rather efficient.

vi. Symmetrically, compute the 27-isogeny ϕB : E → EB := E/〈RB〉 and the images of
PA, QA under ϕB.

vii. Compute the 16-isogeny EB → EBA := EB/〈mAϕB(PA) + nAϕB(QA)〉, which is the
isogeny Alice computes to complete the SIDH square.

viii. Compute the isogeny 27-isogeny EA → EAB := EA/〈mBϕA(PB) + nBϕA(QB)〉, which is
the isogeny Bob computes to complete the SIDH square.

ix. Finally, compare the j-invariants of EAB and EBA.

5. (”Effective Deuring Correspondence”) This is an open-ended exercise to let you think about how
to match maximal orders and ideals to supersingular elliptic curves. The state of the art version
of translating ideals to isogenies underlines the SQISign signature scheme (eprint 2020/1240).

For your favourite small prime, p = 67, determine the endomorphism rings of all supersingular
elliptic curves defined over Fp2 :

(a) List all the maximal orders in Bp,∞;

(b) Find the connecting ideals for some of these orders;

Note that you can build them as follows: for maximal orders O1,O2:

� Let N = [O1 : O1 ∩ O2]. Compute intersections using O1 meet O2;
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� Then take I := NO1 +NO1O2.
You can define such ideals using LeftIdeal(Order ,Generators) where Generators is
any tuple.

� Verify that this ideal is integral.

� Verify that it is a left O1-ideal and right O2-ideal;

� Compute its norm.

(c) List all the supersingular j-invariants;

(d) Start from an elliptic curve with ‘known’ endomorphism ring, e.g. E : y2 = x3 − x;

(e) For small `, compare the `-isogenies between the elliptic curves and ideals of norm `. Use
(3e) to narrow down the orders for elliptic curves defined over Fp.

(f) Note that for curves for which you do know the endomorphism ring, you can use the kernel
ideals. Every isogeny ϕ corresponds to the kernel ideal Iϕ := {α ∈ O : α| kerϕ = 0}. For
instance, the ideal (`, π−1)↔ (`, j−1) corresponds to the subgroup of E on which Frobenius
acts like identity. This approach can help you identify some of the edges (especially for curves
over Fp).

You can find more things that will help you distinguish the orders and match them to elliptic
curves in Cervino and Lauter and McMurdy and in the WIN-4 collaboration.

6. (Quaternion algebras and Matrix rings) Let B be a quaternion algebra over Q with basis 1, i, j, k
with i2 = a and j2 = b and ij = −ji. Check that B embeds into the matrix ring

B →M2(Q(
√
a)),

x+ yi+ zj + wk 7→
(
x+ y

√
a b(z + t

√
a)

z − t
√
a x− y

√
a

)
.

so quaternion algebras naturally live in matrix rings. Moreover, localizing we almost always get
the matrix ring

B ⊗Q` = M2(Q`);

this holds for all but finitely many primes, which we call the ramified primes - these are exactly
the primes that divide the discriminant.
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Hints, comments, commands

1. (a) Supersingular isogeny graphs are k = ` + 1-regular, so the largest two eigenvalues of the
adjacency matrix are k = `+ 1 and µ1.

From Kristin’s lecture, we know that µ1 ≤ 2
√
k − 1 = 2

√
`.

(b) The spectral gap is k − µ1, the expansion constant is bounded below by 2(k−µ1)
3k−2µ1 . The

smaller the eigenvalue, the better the expansion constant. You can compute it in Sage using
.cheegner_constant().

(c) SIGs have very short diameters, about log(p). However, paths used in SIDH/SIKE have
significantly shorter length, about e ≈ 1/2 log p. The subgraph reached in e steps in the
`-isogeny graph is very close to a tree (so looks nothing like an expander!), see for instance
eprint 2020/439.

Note on p ≡ 1 mod 12. For p 6≡ 1 mod 12, these definitions are no longer completely
correct, because the graph is no longer `+ 1-regular, because of the choice we need to make
at the vertices with extra automorphisms.

To make the isogeny graphs undirected, we identify an isogeny with its dual. Hence,
we identify isogenies up to post-composition with automorphisms. Now, let ρ be an
automorphism of a curve E with ρ 6= ±1 (the map P 7→ −P is a non-trivial automorphism,
but it preserves subgroups, hence it preserves kernels of isogenies). Take any isogeny ϕ. Then
if ρ kerϕ 6= ϕ, then the isogenies ϕ and ϕ ◦ ρ are different. But, taking dual isogenies:

ϕ̂ ◦ ρ = ρ̂ ◦ ϕ̂,

which is an isogeny post-composed with an automorphism. Hence, it is equivalent in the
supersingular isogeny graph to ϕ̂. So we are forced to identify the edges corresponding to
the isogenies ϕ ∼ ϕ̂ ∼ ϕ̂ρ ∼ ϕ ◦ ρ. So there will not be enough edges from the vertices with
special automorphisms.

2. The choice of r should be familiar to you if you have tried to find supersingular elliptic curves
using the CM method: you were looking for a supersingular reduction of an elliptic curve with
CM by an order in Q(

√
−r). Moreover, because r ≡ 3 mod 4 and the class number of such an

order is odd (exercise!), there will be a curve E with j-invariant already in Fp.
But the reduction of isogenies is injective, so you know that Q(

√
−r) ↪→ Bp,∞ = End(E) ⊗

Q. Moreover, this imaginary quadratic field cannot commute with Frobenius, because these
endomorphisms of E cannot be defined over Fp: we know that EndFp(E) ⊂ Q(

√
−p) with√

−p↔ Frob. You still need to argue that
√
−r anticommutes with Frobenius.

Discriminants. There is a notion of discriminant for all orders in the quaterion algebra.
Moreover, an order is maximal if and only if its discriminant is equal to the discriminant of
the quaternion algebra. For orders in inclusion, you can read off the relative index from the
discriminant, for Magma it is just the cofactor. You can easily check inclusion, for instance by
simple checking membership for each basis member.

3. Deuring’s correspondence can be written in two ways:

� j-invariants (up to conjugation in Fp2 , that is, j 7→ jp) correspond to maximal orders up to
isomorphism of maximal orders (that is, conjugation in the quaternion algebra B - Skolem
Noether);
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� Starting from an elliptic curve E, the left ideal classes in O := End(E) correspond to
supersingular elliptic curves, such that if E1 ↔ O1 then the right order can be identified
with OR(I) = End(O1).

For j-invariants in F2
p, the endomorphism rings of supersingular elliptic curves with j-invariants

j and jp are isomorphic as orders in the quaternion algebra, even though the curves are not
isomorphic. So if you find 6 left ideal classes and 4 non-isomorphic maximal orders, you see that
exactly 2 supersingular j-invariants are in Fp.

Curves over Fp. Curves over Fp have the Frobenius endomorphism in their endomorphism ring,
which is an endomorphism of norm p and trace 0.

You can use the GramMatrix, which is the Gram matrix for the inner product 〈x, y〉 on the maximal
order satisfying

〈x, y〉 = Norm(x+ y)− Norm(x)− Norm(y),

So we have Norm(x) = 1
2
〈x, x〉.

You can create a quadratic form for the order O : QuadraticForm(GramMatrix(O));.

So you need to represent the element 2p in this quadratic form. Note that Tr(x) = 0 means that
the first coordinate can be set to 0 (if the order has 1 in its basis). But Magma doesn’t naturally
create orders with 1 in the basis, so you can’t just set a = 0.

5


