
PCMI 2021: Supersingular isogeny graphs in cryptography

Exercises Lecture 2: Quaternion algebras, Endomorphism rings

TA: Jana Sotáková version July 29, 2021

From the previous exercise sheet: See code for exercise 1-1, 1-2 and 1-3 at the website.

You can find some comments on the exercises on the next page.

1-4. (Supersingular isogeny graphs) Write code to generate the supersingular isogeny graph over Fp2 ,
using the following steps. On input coprime primes p and `;

(a) Find one supersingular elliptic curve over E0/Fp2 , represented by the j-invariant;

Note that just guessing randomly doesn’t help. There are about p/12 supersingular j-
invariants, but there are p2 j-invariants in Fp2 , so you only have a chance if 1/p that your
random j is supersingular.

You might think restricting to j ∈ Fp works, but there you actually only have
√
p supersingular

j-invariants, as opposed to p j-invariants in Fp. So you have 1/
√
p chance to guess - which is

negligible for p large.

(b) Write a neighbor function that on input an elliptic curve E, finds all the neighbours of E in
the SSIG G`: (the j-invariants of) all the supersingular elliptic curves `-isogenous to E.

(c) Using a breadth-first-search approach, generate the graph by starting from the curve found
in Step (b) and the Neighbor function from Step (c).

You can use the code in your Sage installation or on Cocalc. For Magma, you can use and adapt
the (not yet complete) code from here ssig.m.

Second lecture

1. For small primes p ≡ 1 mod 12, denote the SSIG 2-isogeny graph as G2.

(a) Find the adjacency matrix A of G2;
(b) Find the largest 2 eigenvalues of A;

(c) Compute the spectral gap. Estimate the expansion constant c. You can also try to compute
it.

(d) Find the diameter of the graph.

(e) When p 6≡ 1 mod 12, the vertices corresponding to curves with extra automorphisms make
the graph undirected. Can you get around this?

SSIGs have very short diameters, about log(p). However, most paths used in cryptography have
significantly shorter length, about 1/2 log p.

2. (SIDH key exchange)

(a) (Sanity check) Suppose both Alice and Bob choose points SA, SB from the same torsion group
E[2n]. Find the curve EAB := E/〈SA, SB〉 (with high probability).

(b) We will go through the SIDH key exchange:

https://jana-sotakova.github.io/PCMI.html
https://jana-sotakova.github.io/PCMI/visual_SSIG.txt
https://cocalc.com/
https://jana-sotakova.github.io/PCMI/ssig.m


i. For p = 431, we have p+ 1 = 432 = 24 · 33. Let E : y2 = x3 + x/F2
p.

ii. Verify that E/Fp2 has (p + 1)2 points. Supersingular elliptic curves have very special
group structure, which implies that E[24], E[33] ⊂ E(Fq) (see Theorem 3.7 of Schoof or,
in more generality, Theorem 1.b) of Lenstra). Or see Bjorn’s explanation on Discord.

iii. Set up the parameters: find a basis PA, QA ⊂ E[24] and a basis PB, QB ⊂ E[33].

iv. Pick a secret point SA := mAPA+nAQA for Alice; pick a secret point SB := mBPB+nBQB

for Bob. (In practice we set mA = mB = 1, you can, too.)

v. Compute the 16-isogeny ϕA : E → EA := E/〈RA〉 and the images of PB, QB under ϕA.
In practice, such isogenies are computed as chains of 2-isogenies, which is rather efficient.

vi. Symmetrically, compute the 27-isogeny ϕB : E → EB := E/〈RB〉 and the images of
PA, QA under ϕB.

vii. Compute the 16-isogeny EB → EBA := EB/〈mAϕB(PA) + nAϕB(QA)〉, which is the
isogeny Alice computes to complete the SIDH square.

viii. Compute the isogeny 27-isogeny EA → EAB := EA/〈mBϕA(PB) + nBϕA(QB)〉, which is
the isogeny Bob computes to complete the SIDH square.

ix. Finally, compare the j-invariants of EAB and EBA.

You can find hints and comments on the next page (click 1).
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https://www.sciencedirect.com/science/article/pii/0097316587900033
http://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1996c/art.pdf


Notes, comments

1. Generating the supersingular isogeny graph:

(a) What is the size of the supersingular isogeny graph (SSIG):

From the lecture,
#vertices of a SSIG ≈ p/12.

There is a more precise count, coming from the Eichler class number. You can look up the
definition and the proof, easier to remember is that it counts all the supersingular elliptic
curves, weighed by the size of their automorphism groups:

i. Basic count is bp−1
12
c.

ii. Curves with extra automorphisms need to be counted with different weights. So:

A. if p ≡ 3 mod 4, add 1 (for j = 1728);

B. if p ≡ 2 mod 3, add 1 (for j = 0).

(note that both cases above can happen for one p!).

(b) How to find one supersingular elliptic curve. For p ≡ 3 mod 4, you can always the the elliptic
curves E : y2 = x3 ± x. Those have j-invariant 1728.

Otherwise, there’s a general algorithm due to Bröker, using CM theory.

Suppose you have an elliptic curve E/L defined over some number field L, which has complex
multiplication by an order O ⊂ K in some imaginary quadratic field K (you can assume that
L is the Hilbert class field of O for simplicity). Now take a prime P|p in L. Then E reduces
to a supersingular elliptic curve modP if and only if p is non-split in K. So, the j-invariant
of E, which is a root of the Hilbert class polynomial f of O, gives a root of f in Fp2 (all
j-invariants of supersingular elliptic curves are in F2

p).

In other words, if p is nonsplit in K, then the roots of the Hilbert class polynomial in Fp2 give
you supersingular elliptic curves, without the need to construct the elliptic curve E first.

There is one more trick you can play. You can try to find an order O satisfying the above
and with odd class number. Then the degree of f is odd and there will be a root already in
Fp. The class number of O is odd for instance if O is the ring of integers in Q(

√
−q) for q a

prime satisfying q ≡ 3 mod 4.

So you just need to find a small q such that q ≡ 3 mod 4 and such that p is inert in K (p will

be a lot larger than q), that is,
(

−q
p

)
= −1.

2. (a) Supersingular isogeny graphs are k = ` + 1-regular, so the largest two eigenvalues of the
adjacency matrix are k = `+ 1 and µ1.

From Kristin’s lecture, we know that µ1 ≤ 2
√
k − 1 = 2

√
`.

(b) The spectral gap is k − µ1, the expansion constant is bounded below by 2(k−µ1)
3k−2µ1

. The
smaller the eigenvalue, the better the expansion constant. You can compute it in Sage using
.cheegner_constant().

(c) For p 6≡ 1 mod 12, these definitions no longer make sense, because the graph is no longer `+1-
regular, because of the choice we need to make at the vertices with extra automorphisms.
Why do we need to make a choice?

Remember, we identify an isogeny with its dual. Hence, we identify isogenies up to post-
composition with automorphisms. Now, let ρ be an automorphism of a curve E with ρ 6= ±1
(the map P 7→ −P is a non-trivial automorphism, but it preserves subgroups, hence it
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https://www.researchgate.net/publication/228384129_Constructing_supersingular_elliptic_curves


preserves kernels of isogenies). Take any isogeny ϕ. Then if ρ kerϕ 6= ϕ, then the isogenies ϕ
and ϕ ◦ ρ are different. But, taking dual isogenies:

ϕ̂ ◦ ρ = ρ̂ ◦ ϕ̂,

which is an isogeny post-composed with an automorphism. Hence, it is equivalent in the
supersingular isogeny graph to ϕ̂. So we are forced to identify the edges corresponding to
the isogenies ϕ ∼ ϕ̂ ∼ ϕ̂ρ ∼ ϕ ◦ ρ. So there will not be enough edges from the vertices with
special automorphisms.
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