PCMI 2021: Supersingular isogeny graphs in cryptography

Exercises Lecture 1: Elliptic curves, Isogenies, CGL Hash Function
TA: Jana Sotakova version July 27, 2021

Use Magma to do the following exercises. If you need help to get started, please ask on the Discord!
You can find hints and more explanation for the first three exercises on the following page.

1. (Elliptic curves) Over F,, for p = 431:

(a) Define an elliptic curve E/F, with F : y? = 23 + z.

(b) Compute its j-invariant;

(¢) Find an elliptic curve E;/F, with j-invariant 234;

()
)

d

(e) Find another elliptic curve E; with j-invariant 234. Are E; and E, isomorphic over F,? Can
you find a non-isomorphic such pair?

Is this elliptic curve supersingular?

2. (Isogenies) Compute the following for E : y* = 23 + x/F 43,2

(a) Isogeny ¢ : E — E’ with kernel generated by (0,0). What is the degree?
(b) Compute the dual isogeny ¢ : E' — E;
(c) Find all the isogenies of degree 2 from F.
(d) Find all the cyclic isogenies of degree 16 from F.
)

(e) Compute a cyclic isogeny of degree 16 as a sequence of 2-isogenies.
3. (Modular polynomial) Use the modular polynomial ®(X,Y") to find isogenous curves:

(a) Find all the 2-isogenies curves to E : y? = x® + 26z + 279/F 4312;
(b) Find j-invariants of elliptic curves admitting a 16-isogeny from E.
(¢) Find all the self-loops in the ¢-isogeny graph for ¢ < 11.
4. (Supersingular isogeny graphs) Write code to generate the supersingular isogeny graph over Fz,
using the following steps. On input coprime primes p and ¢;
(a) Find one supersingular elliptic curve over E;/F 2, represented by the j-invariant;

(b) Write a neighbor function that on input an elliptic curve E, finds all the neighbours of F in
the SSIG G,: (the j-invariants of) all the supersingular elliptic curves ¢-isogenous to F.

(¢) Using a breadth-first-search approach, generate the graph by starting from the curve found
in Step (b) and the Neighbor function from Step (c).

You can visualize the supersingular isogeny graph for instance in Sage. You can use the code in
your Sage installation or on Cocalc.

5. (CGL Hash function, details here and here.) For a small prime p and any starting supersingular
elliptic curve E, find a collision for the CGL hash fuction on the 2-isogeny SSIG. L.e., find two
strings that hash to the same elliptic curve. This requires you to decide on the ordering of the
edges in the SSIG. Find two isogenies to the same curve.

https://jana-sotakova.github.io/PCMI/visual_SSIG.txt
https://cocalc.com/
https://eprint.iacr.org/2006/021.pdf
https://www.math.mcgill.ca/goren/PAPERSpublic/CharlesGorenLauterHash.pdf

Hints, comments, definitions

1. The elliptic curves E : y? = 23 & always have j-invariant 1728 and are supersingular if and only
if p = 3 mod 4. Similarly, the curve E : y* = 23 & 1 always has j-invariant 0 and is supersingular
if and only if p = 2 (mod 3). Keep these two examples in mind.

As Kristin mentioned in the lecture, two curves with the same j-invariant are isomorphic over F,,
but not necessarily over the same field. Notably, (for p > 3) there will always be two isomoprhism
classes over F,, and those curves are quadratic twists of each other (in the case j(E) = 1728 then
quartic twists).

Magma commands: EllipticCurve, jInvariant, EllipticCurveWithjInvariant,
IsSupersingular, QuadraticTwists, IsIsomorphic

2. For curves in the Weierstrass form, points with z = 0 are always of order 2. So the isogeny should
be of degree 2. The dual isogeny ¢ is such that

Qo =|[degy] on kK,

the dual isogeny will therefore also be an isogeny of degree 2. In isogeny graphs, we typically
identify an isogeny with its dual to get the undirected edges. Note that this requires choices for
7 =0 and j = 1728 because of automorphisms.

Every isogeny is determined by its kernel, so all the 2-isogenies correspond to all the (cyclic)
subgroups of size 2. So to find all the 2-isogenies, we need to determine all the points of order 2.

Cyclic isogenies of degree 16 correspond to cyclic subgroups of degree 16. You can find them all
by first finding a basis of the 16-torsion, that is, finding two independent points of order 16, and
then finding all the cyclic subgroups of size 16.

Remember that isogenies are the well-behaved group quotients for elliptic curves: the isogeny with
kernel (P) is sometimes written as E — E/(P). Moreover, if P has order 16, then the 16-isogeny
with kernel (P) can be decomposed using intermediate subgroups as

E — E/(8P) — E/{4P) — E/(2P) — E/(P).

Magma commands: E! [0,0] defines (0,0) as a point on E; Order to compute order of a point,
Random(E) to get a random point on E; To compute isogeny: IsogenyFromKernel requires a
kernel polynomial; for point P of order 2, can get as follows:

R<X> := PolynomialRing(F); IsogenyFromKernel(E, X - P[1]);
Easy way how to generate isogenies from points for any N:
function IsogenyFromPoint(P) // Needs to have the poly ring in X defined!
Edom := Curve(P);
n := Order(P);
return IsogenyFromKernel (Edom, &*[X - (i*P)[1] : i in [1..n div 2]]);
end function;

Check independent points using the N-th Weil pairing WeilPairing(P,Q, N);

2

3. Modular polynomials are polynomials ®x(X,Y") € Z[X, Y] with the following property for F;, Es:
e there exists a cyclic N-isogeny E; — Es if and only if ®n(j(E4), j(E2)) =0in Fy;

Note that this isogeny is not necessarily defined over IF,. These polynomials are symmetric in X
and Y; for N = ¢ prime, they have degree ¢ + 1 in both X and Y. Moreover, they have giant
coefficients, see Sutherland’s database. Don’t forget to reduce the modular polynomials to the
finite field you are working in!

Modular polynomials can be used to show there is an f-isogeny between two elliptic curves, such
as when you are defining the isogeny graphs. But they do not help you find the isogeny, compare
this with Exercise (2).

Self-loops in the supersingular isogeny graph correspond to self-isogenous elliptic curves, hence to
roots of ®,(X, X). Note that this polynomial factors over Z already as a product of Hilbert class
polynomials for imaginary quadratic fields that admit an element of norm ¢. We will revisit this
once we talk about endomorphisms of elliptic curves. For now, you can take as granted that

e a self-f-isogeny <

e endomorphism of degree ¢ <+

e clement in the endomorphism ring of norm ¢ <>

e the endomorphism ring containing an order O in an imaginary quadratic field such that the
order contains an element of norm ¢, with p being inert in the imaginary quadratic field and
J(E) being the root mod F,. of the Hilbert class polynomial of O.

This is CM theory at its most beautiful! See more in Section 5.3.4 of Charles-Goren-Lauter .

Magma commands: ClassicalModularPolynomial is the database of modular polynomials,
be careful with the large coefficients.

R<X, Y>:=PolynomialRing(F, 2); // F the finite field you need to define
Phi3 :=R!ClassicalModularPolynomial(3); Phi3; // manageable coefficients

You can evaluate polynomials using Evaluate(poly, arg) with arguments arg as a tuple. You
can factor polynomials Factorization;

You can find roots of polynomials using Roots; be careful that you need to do this for a polynomial
in one variable.

https://math.mit.edu/~drew/ClassicalModPolys.html
https://www.math.mcgill.ca/goren/PAPERSpublic/CharlesGorenLauterHash.pdf

