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Abstract

In this part of the Week 6 of the Isogeny School 2020, we study the schemes based on the group action
of a certain class group in an imaginary quadratic field on a set of elliptic curves, such as the Couveignes
and Rostovtsev-Stolbunov schemes and CSIDH and CSURF. These notes are based on the paper [4].

Usually, we do not assume more structure than a free and transitive group action on a set: that we
have a group action, which is efficiently instantiated on the set of elliptic curves by computing isogenies.
However, we will see that finer information about the class group can sometimes give us pretty interesting
information and even lead to attacks on some computational assumptions.

There are two kinds of exercises for you to try. The ones marked ”Exercise” should be solvable by
the techniques introduced in this write-up, the ones marked ” Exploration” might require you to look up
more details online, code a few examples, discuss with others.
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1 Computational isogeny assumptions

In this section, we first repeat the Couveignes[5] and Rostovtsev-Stolbunov[10] schemes (CRS), of which
CSIDH][3] is an improvement and instantiation, as it uses supersingular curves rather than ordinary curves.
These protocols are based on an abelian group action of a certain class group in an imaginary quadratic
field.

In this section, we focus on the cryptographic assumptions underlying the security of these schemes.

1.1 CSIDH and CRS schemes

In this section we briefly recall the notation for commutative isogeny-based key exchange schemes, which
you have already seen in Week 3. These scheme feature two parties, Alice and Bob, who communicate over
a public channel and want to agree on a shared secret.

Alice and Bob first agree on an elliptic curve E/F, with an endomorphism ring contained in an imaginary
quadratic field. Write #E(F,) = g+1—t for some ¢, called the trace (of Frobenius). Then the endomorphism
ring (over F,) is an order O D Z[\/t? — 4q] with discriminant A | #* — 4¢ in an imaginary quadratic
field Q(4/t? —4q). For concreteness, remember that in CSIDH, the choice is Z[/—p] for p = 3 mod 4
and F : y?> = 23 + z is supersingular. However, the results from this module are most interesting for E
supersingular and p = 1 mod 4 (hence ” CSIDH-like schemes”), or E ordinary (Couveignes and Rostovtsev-
Stolbunov protocols).

These key exchange schemes rely on a group action of the class group cl(©) on the set of elliptic curves
isogenous to E. By Tate’s theorem, two elliptic curves over F, are isogenous if and only if they have the same
number of points. Hence isogenous curve have the same number of points, which is equal to #E(F,) = ¢g+1—t
for the same ¢, called the trace (of Frobenius). We consider the set of curves with the same endomorphism
ring and trace, up to isomorphisms:

8ly(O,t) :={E'/F, : Endg,(E') = ©and #E'(F,) = q+ 1 — t}/{F4-isomorphisms}

Then the class group Cl(O) has a free and transitive action on &%,(©,t) and this action is computed
by isogenies. We will denote the classes in C1(©) by [a] and ideals by the\mathfrak font, so a € [a] is a
representative of the class in the class group.

Alice chooses an ideal a and computes her public key E4 = [a] x E/, Bob chooses an ideal b and computes
his public key Ep = [b] x E. They exchange E4 and Ep over the public channel and each perform another
isogeny corresponding to the secret ideal they hold and both obtain E4p = [ab] x E.

1.2 Security assumptions

At the end of the key exchange, Alice and Bob end up with the same elliptic curve E4p = [ab]x E. But how
much guarantee do we have that only Alice and Bob hold the value E45? In cryptography, we formalize our
security conditions by reductions to problems, which we consider hard - which we do not know how to solve
efficiently. We focus on explaining and motivating the security assumptions, not on their formal definitions.
All the curves need to lie in the same &%,(O,t).

Group Action Inverse Problem (GAIP) The curves FE,E,4, Ep are all public information - they are
public keys, transmitted over an insecure channel that anyone can eavesdrop on. So, a necessary condition
is that upon seeing E and E4 (and the implicit the setup data like F,, trace ¢, endomorphism ring), nobody
can recover the secret ideal class a satisfying F4 = ax E. Because if you can recover a from E and E4, you
can impersonate Alice and in particular, you can use a to compute the shared elliptic curve E4p from Bob’s
curve Ep.



The Group Action Inverse Problem (GAIP) assumption: On input E, E4, no adversary running in
polynomial time® can compute [a] € C1(O) satisfying E4 = [a] x E with better than negligible probability?.

Naturally, there are pairs of elliptic curves E, F4 for which the GAIP is easy: for instance, if E4 = E.
Therefore, the correct definition needs to include that the curve E,4 is random. Similar issue applies in all
the following problems.

The GAIP problem is the analogue of the discrete logarithm problem. It is also called the vectorization
problem: think of having two points in an affine space (which has a free and transitive group action by the
underlying vector space) and trying to figure out a vector that translates one point to the other.

Computational Diffie-Hellman assumption (CDH) The hardness of the GAIP is certainly necessary
but not sufficient for the key exchange to be secure. An adversary does not have to be able to recover the
secret keys: perhaps they can compute the shared secret E 45 without being able to solve the GAIP problem.
But obtaining F4p is enough for the adversary: they can clearly break the whole key exchange, because
they now wield the value that only Alice and Bob were supposed to have in the end.

Computational Diffie-Hellman assumption for isogeny group actions (CDH): On input E,E4 := [a] *
E,Ep := [b] x E, no adversary running in polynomial time can output an elliptic curve E4p such that
Eap = [ab] x E with better than negligible probability.

The CDH problem is also called the parallelization problem: again in the affine space analogy, this
problem translates to having a segment from F to E 4, and trying to construct a parallel segment of the
same length from the point Eg. The CDH is a stronger assumption than GAIP: if an adversary can solve
the GAIP problem, then you can modify the adversary to also solve the CDH problem.

It might seem that if the CDH problem is hard then the curve E4p is random. But this is not true in
general: just because you cannot compute F4p completely, it does not mean that you cannot for instance
guess the first or the last bit of the bit representation of its coefficients. Or guess any other bit of information.
Depending on what you use the elliptic curve E4p for, this might be an issue.

Decisional Diffie-Hellman assumption (DDH) Ideally, Alice and Bob would like to use their shared
elliptic curve in some further cryptographic primitives, such as symmetric encryption (think AES, or more
generally block ciphers). But symmetric encryption needs random bit strings as keys (random elements of
{0,1}", typically n = 128 or n = 256). So you would like the elliptic curve to look as random as possible
(we'll discuss below what exactly we mean by this). Similarly, if you would like to construct more advanced
cryptographic applications of isogenies (such as the hash proof systems mentioned by Luca de Feo in Week 5),
the elliptic curve E4p needs to look sufficiently random.

Exercise 1.1. Suppose that E/F,, is supersingular with a Montgomery form E : y*> = 23 + Az® + . Eaplain
why A is not a random element of Fy: give a polynomial time algorithm that distinguishes A from a random
element in F,,. Adapt your algorithm to show that the j-invariant j(E) of a supersingular elliptic curve is
not a random element of F,.

The most extreme property we can ask of the shared key F4p is that this elliptic curve looks like any
other elliptic curve, that the Diffie-Hellman like protocol does not produce any biases in the elliptic curves,
which could be used to link the curve E4p to the elliptic curves E4 and Ep.

The Decisional Diffie-Hellman assumption (DDH): The adversary plays the following game: they are
given a tuple of elliptic curves (F, Ea, Ep, Ec) = (E,[a] x E, [b] x E, [¢] x E), with [¢] = [ab] with probability
1/2 and [¢] <® C1(©) (sampled randomly from C1(©)) with probability 1/2). The adversary then needs
to say whether the tuple they are given is of the first or the second kind, that is, whether E¢ L E AB, O

equivalently, [c] L [ab]. Note that the adversary is not given a, b, ¢ but only the curves E4, Ep, Ec. The
DDH assumption says that no polynomial time adversary can win this game with probability better than
1/2 + negligible.

n the size of the input, that is, polynomial in log q.
2This last part means that a guessing adversary (which can run in polynomial time) can sometimes guess correctly, but the
probability of guessing correctly is negligible - think on the order of inverse exponential 271089 = O(1/q).



One way to read the DDH assumption is that even after seeing the transcript of the Diffie-Hellman
exchange, that is, knowing F, E 4, Ep, your only way of distinguishing the shared key F4p from a random
curve E¢ is not much better than guessing. The DDH assumption is a stronger assumption that CDH: an
adversary that can compute the curve E4p can be used to distinguish E4p from a random curve E¢.

Exercise 1.2. DDH for multiplicative groups. Let p be a prime. Show that the DDH problem is not hard
for the group (Z/pZ)*, that is, if g is a generator of (Z/pZ)™ and a,b,c € Z/(p — 1)Z random, then we can
distinguish the tuple (g, g%, g%, g®) from the tuple (g, g%, g°, g¢) with better probability than 1/2 + negligible.
Calculate the probability of your attack succeeding.

Exercise 1.3. Figure out a countermeasure to your attack to the exercise above.

1.3 Summary

We reviewed the group action-based isogeny schemes and defined the GAIP, CDH and DDH assumptions.

Exploration 1.4. Formulate the Computational and Decisional Diffie-Hellman problems for SIDH. Deter-
mine whether thus defined DDH problem is equivalent to the computational problem.

2 The Tate pairing

Let E/F, be an elliptic curve. A pairing is a bilinear map F x E — F,. Pairings can be very strong tools
in any cryptographic protocol using elliptic curves - both in a destructive and a constructive way. The main
destructive property is that one can use pairings to transfer the discrete logarithm problem for points on
a elliptic curve E/F, to a finite field Fyr, which can be much much easier - especially if k is small, which
is the case for supersingular elliptic curves. On the other hand, the bilinearity of pairings allows you to
play various new tricks, such as a Diffie-Hellman protocol for 3 parties and other cool constructions from
pairing-based cryptography. Arguably the most famous pairing for elliptic curves is the Weil pairing, which
you can read more about in Week 5’s notes. We will focus on the Tate pairing.

For us, the most relevant property of pairings is that they often work well with isogenies. However, the
main drawback is that to obtain information on (the degrees of) isogenies using pairings, you need to know
the images of the points you are pairing, and this is in general a hard problem to do. In fact, the SiGamal
scheme from Week 3 is based on the very problem of not being able to distinguish the image of a point of
order 2" under a secret isogeny of odd degree from a random point of order 2" on the target curve?!

2.1 Definition of the Tate pairing

Let E/F, be an elliptic curve and let m be an odd prime. Assume that y,, C F,. The (reduced) Tate pairing
is a non-degenerate bilinear pairing

T E(Fg)[m] x E(Fg)/mE(Fg) — pm C Fy,
(PaQ) |—>Tm(PvQ) ;

bilinear means that it is linear in both components and non-degeneracy means that for any P € E(F,;)[m]
there exists a point ) € E(F,;) such that the pairing T,,,(P, Q) # 1.
The Tate pairing is compatible with isogenies: Consider an isogeny ¢ : E — E’, then

T (9(P), 0(Q)) = Tpn (P, Q)e8(),

3This is the Points-Commutative Supersingular Isogeny Decisional Diffie-Hellman assumption, see Def 4 in Week 3 notes.




So, Tate pairing can reveal the degree of the isogeny. This is great news: if we can find two points
P, Q and their images ¢(P), ¢(Q), then by taking discrete logarithms for m-th roots of unity we can recover
deg(y) mod m. But the isogeny ¢ we would like to study is the secret isogeny E — [a]* E, so we immediately
run into problems:

1. We do not known the (secret) isogeny ¢, and in general are unable to compute the images ¢(P), v(Q)
for points P, Q € E(F,);

2. Even if we could compute the image of the points P, @, the Tate pairing T}, (P, Q) could still be trivial
(T (P, Q) = 1), so taking the discrete logarithm does not actually give any information;

3. There are infinitely many isogenies E — [a] x E: one for every ideal a in the class [a] € C1(O). If this
approach would work, we would be able to determine the value deg(¢) = N(a) mod m for all ideals
a € [a].

We discuss Problem 1 in Section 2.3 and there we also argue that we need to relax our expectations, with
Problem 2 in Section 2.2 and

We will first deal with this question in the simplest case that E(F,) = Z/mZ x Z/AZ with ged(m, A) =1,
that is, m|#E(F,) but m? t #F(F,). Another way how to express this condition: if we define

E(F)[m™] = U;>1 E(F,) [ml]

as the subgroup of E(F,) consisting precisely of points whose order is a power of m, then our condition
means that E(F,)[m™] = (P) is cyclic and generated by a point of order m.
Later, we will discuss what needs to change for more general settings.

2.2 Non-degeneracy of the Tate pairing

We can use the Tate pairing T, to pair any point of order m with an arbitrary point in E(F,). Moreover,
unlike for the Weil pairing, the Tate self-pairing can be non-triviall That is, it can happen that the self-
pairings T,,,(P, P) # 1. It will be our strategy for the rest of the write-up to find points P for which the
self-pairing is non-trivial.

Let P be any point of order m. We know that E(F,) = E(F,)[m] x E(F,)[A] with ged(m,A) = 1. So
multiplication by m is the zero map on the first summand and a bijection for the second summand, and
therefore

B(F,)/mE(F,) = E(F,)[m] = (P).

But we know that the Tate pairing Ty, is a non-degenerate pairing. Therefore, T, (P, P) # 1.

Exercise 2.1. Suppose that E(Fy)[m™>] = Z/m"Z is cyclic and generated by a point Q of order m™. Let
P =m""1Q be a point of order m. By examining E(F,)/mE(F,), show that T,,(P,Q) # 1.

Exploration 2.2. Suppose that E(F,)[m| = Z/mZ x Z/mZ. Let P € E[m] be a point of order m. Can its
self-pairing be non-trivial, that is, T, (P, P) # 1% Can you find a point Q such that T,,(P,Q) # 17
2.3 Computing the image under an unknown isogeny

In the previous section, we have seen that if E(F,)[m®>] = (P) is cyclic, then the pairing T,, (P, P) is
non-trivial. How can we find the image of P under an unknown isogeny ¢?
We need the following two ingredients. Let ¢ : E — E’ be an isogeny defined over Fy, then:

e Points of order m map to points of order m, that is,
Q(E(Fq)[m]) C E'(Fq)[m].

and there is equality if gcd(deg(p), m) = 1;



e (Tate’s theorem) isogenous curves over F, have the same number of points®.

The second point implies in our setting that E'(F,)[m®>] = (P’) for some P’ € E'(F,) of order m because
m is the highest power dividing #E(F,), which is equal to #E’'(F,) by Tate’s theorem.
Suppose now® that deg ¢ is coprime to m. Then there exists some k € (Z/mZ)* such that

o(P) =kP'.
Bear in mind that k is unknown, but P, P’ we can choose arbitrarily. If we return to the Tate pairings:
Ty (P, P)35(2) = T0 (o(P), p(P)) = Ty (kP kP') = T,n (P, P)**

(the first equality is the isogeny property of the Tate pairing, the second substitution, the last equality is
the bilinearity). If we compare the discrete logarithms, we see that by computing

logr, (p,py(Tm (P, P')) = deg(e) - k~? mod m,

so we can at least determine deg(p) mod m up to squares mod m.
To simplify the notation, if E’ = [a] x E and the isogeny ¢ := ¢, corresponds to ideal a, then we define

1, if logr, (p,p)(Tin(P’, P')) is a square mod m or Tp, (P, P) = 1;
—1 else.

Xm (E, E') = { (1)

Note that we do not refer to the ideal a in the notation x,,(F, E’). Indeed, because none of the choices in
the computation of y,,(E, E’) depend on the (unknown) isogeny ¢, this value needs to be the same for all
ideals a in the ideal class [a].

Exercise 2.3. Use Ezercise 2.1 to extend the results of this section: show that if E(F,)[m™>] = (Q) and
E'(F,)[m®>] =(Q') for points Q and Q' of order m™, then the one can use the pairings T,,(m™~'Q, Q) and
T (m™1Q', Q") to compute xm(E,E').

2.4 Summary

We have seen that the Tate pairing T, is compatible with isogenies, and that there may exists points
P € E(F,)[m] such that T,,,(P, P) # 1. Moreover, if ¢ : E — E’ is an isogeny and we can find or guess the
image ¢(P), then we can recover deg(¢) mod m from

To(p(P), p(P)) = T (P, P)1#9).

If we only know ¢(P) = kP’ for some unknown k, then we can recover deg(¢) mod m up to squares modm.

3 Class group and characters

Until now, we have assumed that the group action given by the class group Cl(©) is essentially a black-box
group action that can be instantiated efficiently using isogenies. Our discussion in Section 2 implied that if
we can find an m-torsion point for which the Tate pairing T,,, (P, P) is non-trivial, we can use this to obtain
information about deg ¢, (in particular, the value up to squares) for any ideal a in the ideal class [a]. This
is too good to be true to expect in full generality. In this section we take a closer look at the class group
cl(O) to find out more.

4The full Tate’s theorem says that curves over Fy are isogenous if and only if the have the same number of points
5And we will, again, see later why we can assume this for isogenies coming from the group action.



3.1 Quadratic characters

Let m be an odd prime (for simplicity). Note that being a square modm is a multiplicative property.
Similarly, composing isogenies multiplies the degree. So, the construction from Section 2 gives us a quadratic
character on the class group:

Xm(E,ax E) - xm(E,bx E) = xpm(E,abx E),

and x,,(E, E')? = 1 for all E, E’. Moreover, it’s easily seen that because of this multiplicativity and because
the group action of cl(©) on &/ is transitive, we can define the map on the class group:

Xm : €l(O) = {£1};
Xm([a]) = x(E, [a] x E) for any E € &/

d
_ (eg(goa)) for the isogeny ¢, : E — [a] x E
m

N
= (a> for any a € [a] with ged(Na,m) =1,
m

where (E) is the Legendre symbol of m. The last equality follows from the fact that the degree of an isogeny
corresponding to an ideal a is Na.

Exercise 3.1. Suppose that there exists m an odd prime such that the character xp, : Cl(O) — {£1} is
non-trivial and can be computed in polynomial time, as in Section 2. Break the DDH assumption for the
class group action of C1(©) on &l4(O,t).

For the computational complexity, please see Section 5 of [4].

3.2 Genus theory

So, the Tate pairing T}, can be used to produce a quadratic character on Cl(©), which we would like to be
non-trivial. Fortunately, all the non-trivial quadratic characters on the class group were already known to
Gauss.

Let O be an order of discriminant A in an imaginary quadratic field. Write A = —2%-b with b = [];_, m{’
for distinct odd primes m;.

Theorem 3.2 (Genus theory, see 1.3 and I1.7 of [6]). All quadratic characters of C1(©) are given by (products
of):

o for every odd prime m;: Yo CL(O) = {£1) fa] (N(a))

m
where a is any representative of [a] satisfying ged(m,N(a)) = 1.
e Define §:am (—1)MN@-D/2 gy (L)N@?-1y8
if A = —4n, extend the set of characters by
1. §ifn=1,4,5 (mod 8),
2. ¢ifn=06 (mod ),
3. de if n =2 (mod 8).

There is one relation between these characters:

XL oG g med 2 gamed2 g o ().



Because of the beauty of number theory, the relation between the characters is secretly the following
statement about ideals, which might be a lot easier to believe: for simplicity, if © = Z[v/—A] with A square-
free, then the ideals p,, above the primes m | A are ramified and of order 2 in the class group, and their
product (again with an appropriate adjustment at the prime 2) is the principal ideal (v/A).

Exercise 3.3. Find all the quadratic characters and relations between them for the class groups of the
following imaginary quadratic orders:

1. Zy/=T05);
2. Z[v/—p] for p=1mod 4;
3. Z[\/=p] for p =3 mod 4;
4. 7 [@] for p=3 mod 4.

Exercise 3.4. Describe all discriminants A for which there exist non-trivial characters on Cl1(O).

Once you solve the exercises above, you will see that there are no non-trivial characters for the class groups
used in CSIDH or CSURF [2]. If we instantiate the CRS/CSIDH class group action with supersingular elliptic
curves over ), with p =1 mod 4, then the character § is always non-trivial.

Exploration 3.5. Quadratic characters are maps from Cl(©) — {£1}, and so have to factor through the
quotient map

Cl(O) — C1(O)/Cl(O)? = {£}.

So, if there are non-trivial characters, it means that the class number is even. But we cannot fully determine
the structure of C1(©)[2°°] just from quadratic characters. Use Sage or LMFDB to find examples with
interesting C1(©)[2°].

Howewver, for a given O, already Gauss knew how to compute square-roots in class groups. You can use
the algorithms of [1] to try to compute square roots of ideals of order 2 in the class group.

4 Noncyclic torsion

Let E/F, be an elliptic curve and let m be an odd prime. In Section 2, we assumed that E(F,)[m™>] = Z/mZ
(or at least that the m®-torsion is cyclic in Exercise 2.1). In this section, we discuss how to remove this
condition, leading to the beautiful theory of isogeny volcanoes.

4.1 All /-isogenies

Tate’s theorem says that two curves E, E' /F, are isogenous over F, if and only if they have the same number
of points. Say #FE(F,) = ¢+ 1 —t. Then End(E) = O D Z[r] for 7 a root of the polynomial z? — tz + ¢
(corresponding to the Frobenius endomorphism). Note that Z[r] has discriminant A, = #? — 4¢. Similarly,
End(E’) = @' D Z[r]. In this section we study the relationship between the orders © and ©' if the elliptic
curves are isogenous by an isogeny of degree a power of £.

The isogenies between elliptic curves in the CRS or CSIDH-like schemes always preserve the endomor-
phism ring: they induce group actions of Cl(©) on &U,(©,t), the set of elliptic curves E/F, with fixed
endomorhism ring © and trace ¢, up to isomorphism. Take £ a split prime in ©, that is, /O = [[ as ideals.
Then the two ideals [ and I give two f-isogenies for any elliptic curve E € &#,(O,t). Those isogenies do not
change the endomorphism ring.

However, any isogeny is given by its kernel and the kernel of an f-isogeny is a subgroup of size . By
looking at the subgroups of size ¢ in

E) 2 Z/Z x 7/VZ,

we see that there are up to £ + 1 isogenies of degree ¢ defined over F,. But only at most two can preserve
the endomorphism ring. The following theorem gives us the rest of the possibilities.


https://www.lmfdb.org/NumberField/

Theorem 4.1 ([7]). If E and E' are £-isogenous by ¢ : E — E’, then
1. either © = ©', in which case @ is called horizontal;
2. or [O: O] = ¢, in which case ¢ is called descending;
3. or O : O] = ¢, in which case ¢ is called ascending.
Group action-based isogeny schemes only use horizontal isogenies, with the exception of CSURF (see

Wouter’s Week 3 and the discussion of 2-isogenies).

4.2 Isogeny volcanoes
Define the component of E (in the ¢-isogeny graph) as the graph G = (V, E) with
e vertices V given by F,-isomorphism classes of curves which are ¢*-isogenous to E over F,,
e edges given by f-isogenies, up to F, equivalence and dual isogenies (as before).
This component of E captures all the curves over F, that can be reached from E by taking ¢-isogenies.

Theorem 4.2 (Kohel’s theorem). For any E/F,, the component of E is an isogeny volcano: There is a
partition of the vertices into disjoint sets V.= Vo U Vi U...V} such that

e the subgraph on Vj, is a cycle

o the subgraph of V; for i # h has no edges,

e isogenies from surface to floor are descending,

e isogenies from floor to surface are ascending,

o ifi <h, every E; € V; has exactly one neighbour E;11 € Vi41,
o cvery E; € V; for i # 0 has £ + 1 neighbours.

The integer h is called the height, the set V}, is called the surface, the set V; is called the floor. Note that
some authors flip the labelling so that Vj is the surface and talk about the depth of the volcano instead.
You can read more about isogeny volcanoes in [11].

Figure 4.1: Example of a volcano of height 2.
All curves in V; have the same endomorphism ring ©; and the curves on the floor satisfy

(©o)e = Zlr]e,

that is, localizing at ¢, the endomorphism ring Oy is as small as possible (the endomorphism ring always
contains Z[x]).



Assume that /£ is odd and the elliptic curves on the floor Vy have End(E) = Z[r] with discriminant ¢? —4q.
Suppose that valy(t? — 4q) = 2h. Since the isogenies going towards the surface are ascending, we obtain a
sequence of orders of successive index /:

©y = Z[ﬂ'] COp--- C Oy
Therefore, to have a volcano of large height, we need a large power of £ to divide 2 — 4q.

Exercise 4.3. What are the possible heights of volcanoes of £-isogenies for supersingular elliptic curves over
F,? How large can the surface be? Note that the answer depends on p mod 8.

Figure 4.2: 2-isogeny volcanoes over F431, the elliptic curves are labelled with the j-invariants and so there
are always two curves with the same label.

4.3 From volcanoes to torsion

In this section, we keep the previous notation of m an odd prime. We tie in together the behaviour of
m°°-torsion with the levels of the isogeny volcanoes.

Theorem 4.4 ([%]). Let Endr, (E) = O be an order in an imaginary quadratic field and let 7 be the Frobenius

endomorphism. Then
©

T—1

E(F,) =
as Endg, (E)-modules, so in particular as abelian groups.

Exercise 4.5. Compute all the possible group structures for a supersingular elliptic curve over Fy,.

Exercise 4.6. Show that if two elliptic curves have isomorphic endomorphism rings, then they lie on the
same level of their volcanoes.

Corollary 4.7 ([9]). Let m be an odd prime, E/F, an elliptic curve with endomorphism ring ©. Let
v=val,(¢+1—1t) and let h be the heigth of the isogeny volcano of E. Then

- E(F,)[m™] =Z/m" if and only if Oy, = Z[r]y, if and only if E is on the floor;
- E(F,)[m™] =Z/m"~! x Z/m if and only if E is on level 1;
- with each ascending isogeny, the m°-torsion becomes more balanced.

Suppose we have two elliptic curves E, E’ € &(,(O,t), with E’ = [a] x E for some a C © an ideal. Then
they have isomorphic endomorphism rings, and hence, by Exercise 4.6, are on the same level. By walking
to the floor from both elliptic curves (which can be done efficiently), we find two elliptic curves Ey, E{, with
the same endomorphism ring ©p and hence connected by an ideal b C Oy, that is, Ej) = [b] x Ey. But curves
on the floor have cyclic m® torsion, so we can apply the methods from Section 2! That is, compute x,,([b])
directly from the elliptic curves Ey, E|. One can show that [b©] = [a] and hence can also obtain the value

of Xm([a])-
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