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Post-quantum cryptography

Most of the public-key encryption used nowadays is based on hard
problems in number theory.

Quantum computers can break these schemes.

(Supersingular) Isogeny-based cryptography: make the number
theory problems even harder.

Protocols:
» SIKE (https://sike.org),
» CSIDH (https://csidh.isogeny.org/),
» signature schemes (GPS, SeaSign, CSI-FiSh)


https://sike.org
https://csidh.isogeny.org/
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Bird's eye view of public key cryptography
Key exchange after Diffie-Hellman
Al sing herseeret g

Bob é/—\lice using Bob's public key

Ep ~rrryi> Ep (+— shared key)

Isogeny crypto
The arrows correspond to paths in an isogeny graph

secret path
E~nnnnsEy
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What are supersingular isogeny graphs

Definition
To define a supersingular isogeny graph, we need:

1. a suitable large prime p,

We will encounter
1. [Fp, finite field of p elements, same as Z/pZ or Z,
2. sz, finite field of p2 elements, quadratic extension of I,

3. Fp: It suffices to think that everything is defined over a finite
field Fgq with g = p" for some n.
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What are supersingular isogeny graphs

Definition
To define a supersingular isogeny graph, we need:
1. a suitable large prime p,

2. the set of vertices: supersingular elliptic curves, up to
isomorphism

We focus on supersingular elliptic curves: given by equations
E:y’=x34+ax+b a,belFy
together with a point at infinity co and such that
{(x,y) 1 x,y €Fp2 and y?> = x> = ax + b} U {oo}| = (p+1)°

If a, b € Fp, then we say that E is defined over F,.
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Labels of vertices

For an elliptic curve
E:y>’=x3+ax+b a,beFy

define j-invariant j(E) = 1728 - 4331% € Fp.
J-invariant

is an isomorphism invariant over [,

Example
The two elliptic curves

E:y?=x3—x E':y? =x3 +4x

both have j(E) = j(E') = 1728, so they are isomorphic but not
over [,



What are supersingular isogeny graphs

Definition
To define a supersingular isogeny graph, we need:
1. a suitable large prime p,

2. the set of vertices: supersingular elliptic curves, up to
isomorphism

3. edges: isogenies of elliptic curves, up to equivalence, up to
dual isogenies, of a certain degree
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Example of isogenies

3. edges: isogenies of elliptic curves, up to equivalence, up to
dual isogenies, of a certain degree

Isogenies in an example
Isogenies are maps of elliptic curves, given by rational maps:

b E:y>=x3—x —E :y?=x3+4x

x>—-1 x*+1
(Xay)’_> Yo 2

X X

We see that the map is not defined at x = 0, so run into problems
at (0,0): define
(0,0), co — 0

There are two points mapping to co, so we say that this isogeny
has degree 2.
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Supersingular isogeny graphs
Fix a prime p (big) and a prime ¢ (small).
The supersingular isogeny graph G¢(F,)

1. vertices: all supersingular elliptic curves up to isomorphism:

labels j-invariants (in FF,2)

2. edges: isogenies of degreee ¢ (we say (-isogenies)

p:1223and€:2 p:8273nd€:3
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Supersingular isogeny graphs as Ramanujan graphs

Fix a prime p (big) and a prime ¢ (small).
The supersingular isogeny graph G¢(F,)
1. vertices: all supersingular elliptic curves up to isomorphism:
labels j-invariants (in FF2)

2. edges: isogenies of degreee ¢ (we say (-isogenies)

Properties

1. exponentially-large graphs (= p/12 vertices)
2. connected, ¢ + 1-regular graphs,

3. short diameters: d = ©(log(p)),
4

. expander graphs: taking random walks of length log(p) is
almost as good as uniform sampling of vertices

5. path finding is hard (remember E ~~ Ep)



Path finding is hard

For p = 1223 and ¢ = 2, shortest path between two random
vertices:
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Examples of the spine

The spine for { =3

® @-@-9=°

p =227

p = 167

Visible structure
In the last picture, we see the nice cycle with 5 vertices and

another component also with 5 vertices.
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Everything over F,: the graph Gy(F),)

Fix £ a small prime and p a large prime.
Definition of Gy(F),)

1. vertices: elliptic curves defined over IFp,, up to
[Fp-isomorphism, (every j-invariant is there twice)

2. edges: (-isogenies defined over [Fp,.

Example with p =179 and ¢ =3
labels = j-invariants of the curves

21838

Any l-isogeny graph Gy(Fp) for £ > 2 will be a union of cycles.
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2-Isogenies: the graph G»(F),)

It depends on p mod 8:

v I,

1. p=1 mod 4: bunch of edges

2. p=3 mod 8: claws

3. p=7 mod 8: volcanoes
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How to pass from G/(IF,) to the Spine S

Two-step process

1. Identify vertices with the same j-invariant,

2. add edges that were not defined over [Fp,.

For / =3 and p =101

Lemma
Whenever we add an edge that does not correspond to an isogeny
defined over F,, we get a double edge.
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Neighbours

p) for p=179.0 =3

slotete!

The Neighbour Lemma

Whenever the two vertices in
Gi(Fp) with j-invariant a do not
have the same neighbours,
there is a double edge from a in

Ge (FP)-
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20(2¢ — 1) such that there is a double edge from j in G/(IF,) if and
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This is a product of Hilbert class polynomials: whether the roots
exist or don't depends on a congruence class of p!



Double edges using modular polynomials

Proposition
There exists a polynomial Res;(X) of degree bounded by
20(2¢ — 1) such that there is a double edge from j in G/(IF,) if and
only if Res,(j) = 0.
(=2
There is a double edge from j if and only if it is a root of

Resy(X) = —22- X2 . (X — 1728) - (X + 3375)?

- (X2 4+ 191025X — 121287375)?

This is a product of Hilbert class polynomials: whether the roots
exist or don't depends on a congruence class of p!

1. p=1 mod 4 then j = 1728 is not a supersingular j-invariant,
2. p=1 mod 3 then j = 0 is not a supersingular j-invariant, ...

Works the same for any £.
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Stacking, folding, attaching for ¢ = 2
Let V C Go(Fp) be a connected component.

1. If V does not contain 1728 or j = 8000, then there exists a
connected component W C G>(F,) with V # W and
identical labels. (Stacking)

2. For j = 1728 or 8000, there is only one connected component
V' containing both vertices j and this component is
symmetric: (Folding)
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Main theorem for ¢ = 2

Stacking, folding, attaching for ¢ = 2
Let V C Go(Fp) be a connected component.

1. If V does not contain 1728 or j = 8000, then there exists a
connected component W C G>(F,) with V # W and
identical labels. (Stacking)

2. For j = 1728 or 8000, there is only one connected component
V' containing both vertices j and this component is
symmetric: (Folding)

2.1 it is either an edge (8000, 8000),

2.2 a claw with 1728 on the surface and as one leaf, with the
remaining leaves having the same label,

2.3 a volcano of depth 2 with 1728 on the surface and an edge
(8000, 8000) on the other side of the cycle on the surface, with
identical paths from 1728 to 8000 from either side of the cycle.

3. At most one pair of vertices admits a new double edge.
(attaching.)



Example for / =2 and p = 431

Example

The graph above is Go(IF,)
and the graph below is the
spine in Go(Fp).

We have

1728 mod 431 =4

8000 mod 431 = 242

and 189 and 150 are the
two roots of the
polynomial (X? +
191025X — 121287375)
that we saw as a factor of
R652(X).




Summary of what the Spine looks like for ¢ = 2

The Fp-subgraph S C Go(F,):

1. for p =1 mod 4, we see single edges, with a possible vertex
with a loop at j = 8000 and one possible component of size 4,

2. for p =3 mod 8, we see claws, with one claw collapsed to an
edge (j = 1728), and a possible pair of claws joined by a
double edge,

3. for p =7 mod 8, we see volcanoes, one of the volcanoes will

be collapsed and possibly two volcanoes will get attached by a
double edge to form a large component.



Why we call the Spine the Spine:

The finite field F,> has an involution: every j is sent to
j=JP.

(we always have j :jp2 = (jP)P).



Why we call the Spine the Spine:

The finite field F,> has an involution: every j is sent to
j=JP.
(we always have j = jP* = (jP)P).

This extends to edges of Gy(Fp,): if there is an edge (j,,’) then we
also have an edge (J7, (j')?).



Why we call the Spine the Spine:

The finite field F,> has an involution: every j is sent to
j=JP.
(we always have j = jP* = (jP)P).

This extends to edges of Gy(Fp,): if there is an edge (j,,’) then we
also have an edge (J7, (j')?).

The spine S is precisely the fixed set under this involution.



Why we call the Spine the Spine:

The finite field F,> has an involution: every j is sent to
j=JP.
(we always have j = jP* = (jP)P).

This extends to edges of Gy(Fp,): if there is an edge (j,,’) then we
also have an edge (J7, (j')?).

The spine § is precisely the fixed set under this involution. We can
build the graph starting from the spine and adding vertices j, jP in
pairs.



Why we call the Spine the Spine:

The finite field F,> has an involution: every j is sent to
j=JP.
(we always have j = jP* = (jP)P).

This extends to edges of Gy(Fp,): if there is an edge (j,,’) then we
also have an edge (J7, (j')?).

The spine § is precisely the fixed set under this involution. We can
build the graph starting from the spine and adding vertices j, jP in
pairs.

How accurate is this picture?
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How central is the Spine?

Opposite vertices

We say that j and j/ are opposite vertices if the shortest path

between j and j/ passes through the spine.

Ratios of the 8
number of opposite 6
conjugate pairs
(pairs j, jP) to
opposite arbitrary 2
pairs. (¢ = 2)

Conclusion: the spine is not in the middle of the graph.

Prime

050000 60000 70000 80000 90000 100000
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Distances to the spine

Since the spine is a subgraph of size ~ ,/p, folklore is that we will

reach the spine in approximately %Iog(p) steps.

More precisely, log,(|G2(Fp)|/|S]) is the expected distance to the
spine from a random vertex.

We look at:

d, = (average distance to S for prime p)/ log,(|G2(Fp)|/|S|)

SR
e
LI

i

e

me

5000 10000 15000

dp for primes p mod 8

_ Pri
5000 10000 15000 20000

size of S for p mod 8.



Distances of components for / =2 and p =1 mod 4

Normalized (by the 0.72

diameter) distance 0.68

between S 0.64

components (bl'ue) 08 . P T

and random pairs e T T " Rantom

(red) 0561 » : : - Prime

10000 20000 30000 40000 50000 60000

. . 1.12

Ratio of distances

between 108 .

components and 1.04{ »

the distances L

between random
pairs

Prime

10000 20000 30000 40000 50000 60000



Distances of components for / =2 and p =1 mod 4

Normalized (by the 0.72
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Why is the distance of the edges between IF,, vertices larger than
the distance of random vertices?



Diameter of G,(F))
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Figure 6.1: Diameters of 2-isogeny graph over Fy, with y = log,(p/12) + logy(12) + 1 (red) and
y = 3logy(p/12) — 1 (blue).
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Figure 6.1: Diameters of 2-isogeny graph over Fy, with y = log,(p/12) + logy(12) + 1 (red) and
y= %logQ(p/IQ) —1 (blue).

» Blue line: similar to LPS graphs (Lubotzky-Phillips-Sarnak)
P> Red line: similar to random Ramanujan graphs



Diameters modulo 12

The line is y = log,(p/12) + log,(12) + 1.
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Not just a picture

average diameter for 100,000 < p < 300,000

1 mod 12 | 17.2190476190476 | 5 mod 12
7 mod 12 | 17.7346938775510 | 11 mod 12

17.8761061946903
17.9919354838710

average diameter for 300,000 < p < 500,000

1 mod 12 | 18.4000000000000 | 5 mod 12
7 mod 12 | 18.8235294117647 | 11 mod 12

18.9230769230769
19.1000000000000

Average diameters sorted by primes modulo 12. The first data set
contains around 100 primes in each congruence class, the latter

between 10 to 17 primes.




Trends Modulo 12

For p=1 (mod 12):
» smaller 2-isogeny graph diameters,
» spine as disconnected as possible,
> fewer vertices in the spine.
For p =11 (mod 12):
> larger 2-isogeny graph diameters,
» fewer (but larger) connected components in the spine,

P> more vertices in the spine.



Adventures in Supersingularland

Thank you for your attention!

For more, go to: eprint 2019/1056



	Diameter
	Conclusion

