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Isogenies in post-quantum cryptography

Why should we care about isogenies?
We can do post-quantum crypto with isogenies:
1. SIKE (KEM, in the NIST competition),
2. CSIDH (key exchange),
3. signatures (SeaSign, CSI-FiSh),
4

. other constructions (VDFs, threshold schemes, ...?7)

The time to understand isogenies is now
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About elliptic curves

Elliptic curves

They are given by an equation
y2=x34+ax+b for some a, b such that 4a° + 27b% # 0

together with a point at infinity oco.

In crypto

Usually, we ask that a, b € F,(= Z/p finite field with p elements)
And that also x,y € IFp: clearly only finitely many solutions.

Fact
We can count the number of solutions #E(F,) efficiently.



Group law

Group law

1. add two points: draw a line through them, flip the third
intersection point over the x-axis,

2. double a point: draw a tangent, flip the intersection point
over the x-axis.
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We want to understand E[2] = {P € E : [2]P = oo}.

Inverse of a point
If P=(x,y) then —P = (x,—y).
Hence points of order 2 satisfy y = 0.



Points of order 2

Need to find points for which y = 0.

E:y>?=x3—x

3

Factor x> —x = x - (x — 1) - (x + 1) so points of order 2 are:

P =(0,0), Q = (1,0), R=(-1,0)

E:y?>=x3-2x
Factor x3 — 4x = x(x? — 2). We still have 3 points of order 2 :

P =(0,0), Q = (v2,0), R = (—V2,0).

Fact
For any N, we have

E[N] = {P: [N]P = 0o} 2 Z/N x Z/N



Isogenies

Algebraic formula for multiplication by 2:

Multiplication by [2] on the elliptic curve y? = x3 — x is given by:
P [2]P
(%, ) s x*42x2 +1 8x% — 40x* — 40x% + 8
X .
Y 4(x3 — x) Y 64(x3 — x)?

3

Not defined at oo and points where x> — x = 0:

00, P,Q,R— o0
ker[2] = {o0, P, Q, R} = E[2]

Properties:

1. group homomorphism,

2. given by algebraic formulas,
3. has a finite kernel.



Isogenies: a definition

Definition of isogenies

A map ¢ : E — E’ of elliptic curves is an isogeny if:
> it is given by rational functions in the coordinates x,y on E,
> preserves the group law of elliptic curves,

» has a finite kernel (which is always a subgroup). In particular,
only finitely many points map to oc.

The degree of the isogeny ¢ is defined to be # ker ¢.

Existence of isogenies

For any finite subgroup H, there exists an isogeny ¢ : E — E’ with
kernel exactly H:

E—E = E/H

and there are formulas for it.



Isogenies have a factoring property

Isogenies have a universal property:

Let ¢ : E — E’ be an isogeny. If P € ker ¢, then there exist
isogenies 1, ¢ such that kery = (P) and

p=poy
deg ¢ = degp - degt)



Isogenies have a factoring property

Isogenies have a universal property:

Let ¢ : E — E’ be an isogeny. If P € ker ¢, then there exist
isogenies 1, ¢ such that kery = (P) and

p=por

E :y?>=x*—x and ¢ = [2] multiplication by 2
Then (0,0) € ker[2] = {00, (0,0),(1,0),(—1,0)} and

(x4+2x2+1 8X6y740x4y740x2y+8y)

4(x3—x) ’ 64(x0 —2x4+x2)

One can check that ) o 1) = [2] by composing the formulae.



Detour on the j-invariant

The factorization is unique up to composing with isomorphisms of
elliptic curves.
For an elliptic curve

E:y?’=x3+ax+b

define j-invariant j(E) = 1728 - m €Fp

E:y>=x3—x

has b =0 and so j(E) = 1728.

j-invariant
is an isomorphism invariant: if E and E’ can be obtained from
each other by a change of coordinates then

J(E) =i(E").



Small recap
So far

1. There are always 3 isogenies of degree 2,

2. we can compute them efficiently using Vélu's formulas.

Points of larger degree
Let P be a point on E(F,) of order N, assume N = 2".

1. There is an isogeny of degree 2" with ker ¢ = (P):
¢:E— E =E/(P)

2. But Velu's formulas are no longer efficient.

3. but @ = [2"71]P has order 2 and we can decompose:

deg=2"

E E/(P)
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Isogeny-based Diffie-Hellman
set-up
Choose an elliptic curve E defined over some [F; that satisfies that
E[27], E[3°] C E(Fy).
1. Alice chooses a secret P € E[2"] and computes the isogeny
qu E— E/<P> = EA
2. Bob chooses a secret Q € E[3°] and computes
¢B E — E/<Q> =: EB
3. Alice and Bob exchange Ex, Eg (+ a bit more of extra
information)

4. They both are able to compute j(Eag) = j(E/(P, Q)).
Alice using her secret
e e S A e e e e A
Bob éAlice using Bob'’s public key

Eg mmgggmj(EAB) (+— shared key)



Finally, isogeny graphs

Alice’s secret is an isogeny ¢4 : E — E/(P) of degree 2". We saw
we can decompose this into a sequence of a isogenies of degree 2.

Definiton of an /-isogeny graph
Let Fq be a finite field. Let S be a set of isomorphism classes (or
J-invariants) of elliptic curves defined over F,. We define the
following graph Gy(Fq):

» the set of vertices is S,

» there is an edge between j,j' € S if and only if there is a
(-isogeny between curves with j-invariants j and j'.

For Alice's secret to be safe

it needs to be difficult to find paths between the vertices j(E) and
J(Ea) in the graph Gy(Fy).

Same for Bob in G3(Fy).



Supersingular elliptic curves

We choose to use supersingular elliptic curves:
1. all supersingular elliptic curves have j-invariant in >, and

hence have equations over sz,

2. all supersingular elliptic curves have
E(F)=Z/(p+1)xZ/(p+ 1) so if we choose

p=2"-3°-1,

we obtain E[2"] and E[3°] already defined over I

3. so there are 3 - 271 different choices for Alice and 4 - 351
different choices for Bob.

4. moreover, path finding seems to be hard.



Supersingular isogeny graphs

Supersingular (-isogeny graphs G;(F )

Vertices: all supersingular j-invariants.

p:1223and€:2 p:827and£:3




Examples and properties
Q)

Properties

1. exponentially-large graphs (=~ p/12 vertices)

2. connected, ¢+ 1-regular graphs (except for at most 2 vertices),

3. short diameters: d = ©(log(p)),

4. expander graphs: taking random walks of length log(p) is
almost as good as uniform sampling of vertices

5. path finding is hard (exponentially hard both classically and
quantumly)



Path finding

2, shortest path between two random

= 1223 and /¢

For p

vertices:




The Spine of G/(IF2)

Path finding is not hard for all pairs of vertices

Between vertices labelled with j-invariants j € Fj,, path finding is
easier (subexponential).

Definition
The spine S is the induced subgraph with vertices

{J.ZJ.G]FP}

It is a subgraph of size approximately ,/p.



How do these vertices sit inside the graph?

For crypto, we usually assume that they are randomly distributed
throughout the graph.

p = 1103, random p = 1103, the subgraph
subgraph of the of I, vertices
expected size




Examples of the spine

The spine for { =3

® @-@-9=°

p =227

p = 167

Visible structure
In the last picture, we see the nice cycle with 5 vertices and

another component also with 5 vertices.



The CSIDH-land: the graph G/(FF,)

Fix £ a small prime and p a large prime.
Definition of Gy(F))

1. vertices: elliptic curves defined over IF,,, up to [Fp-isomorphism,
2. edges: (-isogenies defined over [Fp,.

J-invariants
is not an [Fp-isomorphism invariant, every j-invariant will be there
twice! (#quadratictwists)

Example with p =179 and ¢/ = 3

labels = j-invariants of the curves



Quick road to the CSIDH

Example with p =179 and ¢ =3
labels = j-invariants of the curves
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1. Any fl-isogeny graph G,(F,) for £ > 2 will be a union of cycles,

2. their sizes can be explalned by class-group actions of Z[\/—p]
or Z [HTH} ,

3. this abelian group actions makes navigation between vertices
of these graphs subexponential

4. CSIDH takes a union of the graphs for several ¢ and argues
that subexponential does not mean practical.



How to pass from G/(IF,) to the Spine S

Two-step process

1. Identify vertices with the same j-invariant,

2. add edges that were not defined over [Fp,.

For / =3 and p =101

Lemma
Whenever we add an edge that does not correspond to an isogeny
defined over F,, we get a double edge.



Neighbours

p) for p=179,0 =3

slotete!

The Neighbour Lemma For p = 179, we have

Whenever the two vertices in 1728 = 117 and we see the two
Gi(Fp) with j-invariant a do not double edges from 1728.
have the same neighbours,

a=1728.

Moreover, the two neighbours
of one vertex with j = 1728
have the same j-invariant.




Main theorems

Let p be a prime such that the primes above ¢ in (—4p) have odd
order (i.e., all the connected components are cycles containing an
odd number of vertices).

Theorem for ¢ > 2
In the graph G,(F,):

1. for any connected component V' of Gy(Fp,) that does not
contain 1728, there exists a ‘twist’ component W such that if
we consider V', W as cycles labelled by the j-invariants, V' and
W become identical,

For p =179 and ¢ = 3, we have 1728 = 117.



Main theorems, continued

2. the connected components of 1728 are symmetric: the
vertices farthest away from 1728 are two curves with the same
j-invariants connected by an (-isogeny.

This is the only arrangement in which:

P two vertices with the same j-invariant share an edge,
» two components include vertices with the same j-invariant
without being identical as in

elsiele

For p =179 and ¢ = 3, we have 1728 = 117.



Main theorems, continued a bit longer
When we pass to the spine S, the following happens:

1. the two components containing 1728 first collapse into simple
paths with 1728 at one end and with a loop at opposite ends,

2. these two looped-paths are then attached at the vertex 1728,

3. all other components get identified with their twist twins and
form perfect cycles,

4. fewer than 4¢2 new edges are added, and the newly-added
edges always come in pairs.




2-Isogenies: the graph G»(F),)

It depends on p mod 8:

v I,

1. p=1 mod 4: bunch of edges

2. p=3 mod 8: claws

3. p=7 mod 8: volcanoes



Example for / =2 and p = 431

Example

The graph above is Go(IF,)
and the graph below is the
spine in Go(Fp).

We have

1728 mod 431 =4

8000 mod 431 = 242

and 189 and 150 are the
two roots of the
polynomial (X? +
191025X — 121287375)
that we saw as a factor of
R652(X).




Summary of what the Spine looks like for ¢ = 2

The Fp-subgraph S C Go(F,):

1. for p =1 mod 4, we see single edges, with a possible vertex
with a loop at j = 8000 and one possible component of size 4,

2. for p =3 mod 8, we see claws, with one claw collapsed to an
edge (j = 1728), and a possible pair of claws joined by a
double edge,

3. for p =7 mod 8, we see volcanoes, one of the volcanoes will

be collapsed and possibly two volcanoes will get attached by a
double edge to form a large component.



Adventures in Supersingularland

Thank you for your attention!

For more, go to: eprint 2019/1056



